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Abstract

We consider the question of constructing cryptographic pseudorandom
generators (PRGs) inNC0, namely ones in which each bit of the output de-
pends on just a constant number of input bits. Previous constructions of such
PRGs were limited to stretching a seed ofn bits ton+ o(n) bits. This leaves
open the existence of a PRG with a linear (let alone superlinear) stretch in
NC0. In this work we study this question and obtain the following main
results:

1. We show that the existence of a linear-stretch PRG inNC0 implies
non-trivial hardness of approximation resultswithout relying on PCP
machinery. In particular, it implies that Max3SAT is hard to approxi-
mate to within some multiplicative constant.

2. We construct a linear-stretch PRG inNC0 under a specific intractabil-
ity assumption related to the hardness of decoding “sparsely gener-
ated” linear codes. Such an assumption was previously conjectured by
Alekhnovich (FOCS 2003).

∗Preliminary version of this work appeared in the Proceedings of the 10th International Workshop
on Randomization and Computation (RANDOM 2006). Research supported by grants 1310/06 and
36/03 from the Israel Science Foundation.



1 Introduction

A cryptographic pseudorandom generator (PRG) [10, 33] is a deterministic func-
tion that stretches a short random seed into a longer string that cannot be distin-
guished from random by any polynomial-time observer. In this work, we study the
existence of PRGs that both (1) admit fast parallel computation and (2) stretch their
seed by a significant amount.

Considering the first goal alone, it was recently shown in [4] that the ultimate
level of parallelism can be achieved under most standard cryptographic assump-
tions. Specifically, any PRG inNC1 (the existence of which follows, for example,
from the intractability of factoring) can be efficiently “compiled” into a PRG in
NC0, namely one where each output bit depends on just a constant number of in-
put bits. However, the PRGs produced by this compiler only stretch their seed by
a sublinear amount: fromn bits ton + O(nε) bits for some constantε < 1. Thus,
these PRGs do not meet our second goal.

Considering the second goal alone, even a PRG that stretches its seed by just
one bit can be used to construct a PRG that stretches its seed by any polynomial
number of bits [16, Sec. 3.3.2]. However, all known constructions of this type are
inherently sequential. Thus, we cannot use known techniques for turning anNC0

PRG with a sublinear stretch into one with a linear, let alone superlinear, stretch.
The above state of affairs leaves open the existence of alinear-stretchPRG

(LPRG) inNC0; namely, one that stretches a seed ofn bits inton + Ω(n) output
bits.1 (In fact, there was no previous evidence for the existence of LPRGs even in
the higher complexity classAC0.) This question is the main focus of our work. The
question has a very natural motivation from a cryptographic point of view. Indeed,
most cryptographic applications of PRGs either require a linear stretch (for exam-
ple Naor’s bit commitment scheme [25]), or alternatively depend on a larger stretch
for efficiency (this is the case for the standard construction of a stream cipher or
stateful symmetric encryption from a PRG, see [18]). Thus, the existence of an
LPRG inNC0 would imply better parallel implementations of other cryptographic
primitives.

1.1 Our Contribution

LPRG in NC0 implies hardness of approximation. We give a very different,
and somewhat unexpected, motivation for the foregoing question. We observe that
the existence of an LPRG inNC0 directly implies non-trivial and useful hardness

1Note that anNC0 LPRG can be composed with itself a constant number of times to yield an
NC0 PRG with an arbitrary linear stretch.
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of approximation results. Specifically, we show (via a simple argument) that an
LPRG inNC0 implies that Max3SAT (and hence allMaxSNP problems such as
Max-Cut, Max2SAT and Vertex Cover [27]) cannot be efficiently approximated to
within some multiplicative constant. This continues a recent line of work, initiated
by Feige [14] and followed by Alekhnovich [1], that provides simpler alternatives
to the traditional PCP-based approach by relying on stronger assumptions. Unlike
these previous works, which rely on very specific assumptions, our assumption
is of a more general flavor and may serve to further motivate the study of cryp-
tography inNC0. On the down side, the conclusions we get are weaker and in
particular are implied by the PCP theorem. In contrast, some inapproximability
results from [14, 1] could not be obtained using PCP machinery. It is instructive to
note that by applying our general argument to the sublinear-stretch PRGs inNC0

from [4] we only get “uninteresting” inapproximability results that follow from
standard padding arguments (assuming P6=NP). Furthermore, we do not know how
to obtain stronger inapproximability results based on a superlinear-stretch PRG in
NC0. Thus, our main question of constructing LPRGs inNC0 captures precisely
what is needed for this application.

Constructing an LPRG in NC0. We present a construction of an LPRG inNC0

under a specific intractability assumption related to the hardness of decoding “sparsely
generated” linear codes. Such an assumption was previously made by Alekhn-
ovich in [1]. The starting point of our construction is a modified version of a PRG
from [1] that has a large output locality (that is, each output bit depends on many
input bits) but has a simple structure. We note that the output distribution of this
generator can be sampled inNC0; however the seed length of thisNC0 sampling
procedure is too large to gain any stretch. To solve this problem we observe that
the seed has large entropy even when the output of the generator is given. Hence,
we can regain the stretch by employing a randomness extractor inNC0 that uses
a “sufficiently short” seed to extract randomness from sources with a “sufficiently
high” entropy. We construct the latter by combining the known construction of
randomness extractors fromε-biased generators [24, 8] with previous construc-
tions of ε-biased generator inNC0 [23]. Our LPRG can be implemented with
locality 4; the stretch of this LPRG is essentially optimal, as it is known that no
PRG with locality 4 can have asuperlinearstretch [23]. However, the existence of
superlinear-stretch PRG with possibly higher (but constant) locality remains open.

By combining the two main results described above, one gets non-trivial in-
approximability results under the intractability assumption from [1]. These (and
stronger) results weredirectly obtained in [1] from the same assumptionwithout
constructing an LPRG inNC0. Our hope is that future work will yield construc-
tions of LPRGs inNC0 under different, perhaps more standard, assumptions, and
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that the implications to hardness of approximation will be strengthened.

LPRG in NC0 and Expanders. Finally, we observe that the input-output graph
of any LPRG inNC0 enjoys some non-trivial expansion property. This connec-
tion implies that a (deterministic) construction of an LPRG inNC0 must use some
non-trivial combinatorial objects. (In particular, one cannot hope that “simple”
transformations, such as those given in [4], will yield LPRGs inNC0.) The con-
nection with expanders also allows to rule out the existence ofexponentially-strong
PRGs withsuperlinearstretch inNC0.

1.2 Related Work

The existence of PRGs inNC0 has been recently studied in [12, 23, 4]. Cryan
and Miltersen [12] observe that there is no PRG inNC0

2 (i.e., where each output
bit depends on at most two input bits), and prove that there is no PRG inNC0
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achieving a superlinear stretch; namely, one that stretchesn bits ton + ω(n) bits.
Mossel et al. [23] extend this impossibility toNC0

4. Viola [32] shows that an LPRG
in AC0 cannot be obtained from a OWF via non-adaptive black-box constructions.
This result can be extended to rule out such a construction even if we start with a
PRG whose stretch is sublinear.

On the positive side, Mossel et al. [23] constructed (non-cryptographic)ε-
biased generators with linear stretch and exponentially small bias inNC0

5. Ap-
plebaum et al. [4] subsequently showed that, under standard cryptographic as-
sumptions, there are pseudorandom generators inNC0

4. However, these PRGs
have onlysublinear-stretch. PRGs with linear stretch are known to exist (under
plausible assumptions) in the classNC1 and even inTC0, e.g., [22, 26]. (Re-
call thatTC0 is the class of functions computable by constant depth circuits con-
sisting of a polynomial number of threshold gates with unbounded fan-in; hence,
NC0  AC0  TC0 ⊆ NC1.)

The first application of average-case complexity to inapproximability was sug-
gested by Feige [14], who derived new inapproximability results under the as-
sumption that refuting 3SAT is hard on average on some natural distribution. In [1]
Alekhnovich continued this line of research. He considered the problem of deter-
mining the maximal number of satisfiable equations in a linear system chosen at
random, and made several conjectures regarding the average case hardness of this
problem. He showed that these conjectures imply Feige’s assumption as well as
several new inapproximability results. While the works of Feige and Alekhnovich
derivednew inapproximability results (that were not known to hold under the as-
sumption thatP 6= NP), they did not rely on the relation with a standard cryp-
tographic assumption or primitive, but rather used specific average case hardness
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assumptions tailored to their inapproximability applications. A relation between
the security of a cryptographic primitive and approximation was implicitly used
in [23], where an approximation algorithm for Max2LIN was used to derive an
upper bound on the stretch of a PRG whose locality is 4.

Organization. The rest of this paper is structured as follows. We begin with a
discussion of notation and preliminaries (Section 2). In Section 3 we prove that an
LPRG inNC0 implies that Max3SAT cannot be efficiently approximated to within
some multiplicative constant. Then in Section 4 we extend these results and show
how to derive the inapproximability of Max3SAT fromNC0 implementations of
other cryptographic primitives. In Section 5 we present a construction of an LPRG
in NC0. This construction uses anNC0 implementation of anε-biased generator
as an ingredient. A uniform construction of such anε-biased generator is described
in Section 5.4. Finally, in Section 6, we discuss the connection between LPRG in
NC0 to expander graphs.

2 Preliminaries

2.1 Basic Definitions

Probability notation. We useUn to denote a random variable uniformly dis-
tributed over{0, 1}n. If X is a probability distribution, or a random variable,
we writex ← X to indicate thatx is a sample taken fromX. Themin-entropyof
a random variableX is defined asH∞(X) def= minx log( 1

Pr[X=x]). Thestatistical

distancebetween discrete probability distributionsY andY ′, denotedSD(Y, Y ′),
is defined as the maximum, over all functionsA, of thedistinguishing advantage
|Pr[A(Y ) = 1]− Pr[A(Y ′) = 1]|.

A function ε(·) is said to benegligible if ε(n) < n−c for any constantc > 0
and sufficiently largen. We will sometimes useneg(·) to denote an unspecified
negligible function. For two distribution ensembles{Xn}n∈N and{Yn}n∈N, we
write Xn ≡ Yn if Xn and Yn are identically distributed, andXn

s≈ Yn if the
two ensembles arestatistically indistinguishable; namely,SD(Xn, Yn) is negligi-
ble in n. A weaker notion of closeness between distributions is that ofcompu-
tational indistinguishability: We writeXn

c≈δ(n) Yn if for every (non-uniform)
polynomial-size circuit family{An}, the distinguishing advantage|Pr[An(Xn) =
1] − Pr[An(Yn) = 1]| is bounded byδ(n) for sufficiently largen. When the dis-
tinguishing advantageδ(n) is negligible, we simply writeXn

c≈ Yn. By definition,
Xn ≡ Yn implies thatXn

s≈ Yn which in turn implies thatXn
c≈ Yn. A distribution

ensemble{Xn}n∈N is said to bepseudorandomif Xn
c≈ Un.
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We will use the following definition of a pseudorandom generator.

Definition 2.1 (Pseudorandom generator)A pseudorandom generator (PRG) is
a deterministic functionG : {0, 1}∗ → {0, 1}∗ satisfying the following two condi-
tions:

• Expansion: There exists astretch functions : N → N such thats(n) > n,
for all n ∈ N, and|G(x)| = s(|x|) for all x ∈ {0, 1}∗.

• Pseudorandomness: The ensembles{G(Un)}n∈N and{Us(n)}n∈N are com-
putationally indistinguishable.

Whens(n) = n + Ω(n) we say thatG is a linear-stretchpseudorandom generator
(LPRG). By default, we requireG to be polynomial time computable.

It will sometimes be convenient to define a PRG by an infinite family of func-
tions{Gn : {0, 1}m(n) → {0, 1}s(n)}n∈N, wherem(·) ands(·) are polynomials.
Such a family can be transformed into a single function that satisfies Definition 2.1
via padding. We will abuse notation and writeG : {0, 1}m(n) → {0, 1}s(n) to de-
note the family{Gn : {0, 1}m(n) → {0, 1}s(n)}n∈N. We will also rely onε-biased
generators, defined similarly to PRGs except that the pseudorandomness holds
only against linear functions overF2. Namely, for a bias functionε : N → (0, 1)
we say thatG : {0, 1}n → {0, 1}s(n) is anε-biased generator if for every non-
constant linear functionL : Fn

2 → F2 and all sufficiently largen’s it holds that
|Pr[L(G(Un)) = 1]− 1

2 | < ε(n).

Locality. We say thatf : {0, 1}n → {0, 1}s is c-local if each of its output bits
depends on at mostc input bits, and thatf : {0, 1}∗ → {0, 1}∗ is c-local if for
everyn the restriction off to n-bit inputs isc-local. For a constantc, the non-
uniform classNC0

c includes allc-local functionsf : {0, 1}∗ → {0, 1}∗. The class
NC0 contains all functions withsomeconstant locality, namely it is the union of
all classesNC0

c . The classuniform-NC0 is the class ofNC0 functions that can be
computed in polynomial time; i.e.,uniform-NC0 = NC0 ∩ P.2

Expanders. In the followings think ofm as larger thann. We say that a bipar-
tite graphG = ((L = [m], R = [n]), E) is (K,α) expanding if every set of left

2We can equivalently define the classesNC0 anduniform-NC0 in terms of circuits. In this case
the classNC0 is the class of functions which are computable by constant depth circuits with bounded
fan-in, and the classuniform-NC0 requires these circuits to be polynomial-time constructible. These
definitions are trivially equivalent in the non-uniform case. This equivalence also holds in the uniform
case since, given an oracle to ac-local functionf , one can efficiently “learn” anNC0 circuit that
computesf . (Each of the output bits off is a boolean function that depends only onc input bits,
hence it can be learned in timeO(nc) via a brute force search over all possible subsets ofc relevant
variables.)
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verticesS of size smaller thanK has at leastα · |S| right neighbors. A family of
bipartite graphs{Gn}n∈N whereGn = ((L = [m(n)], R = [n]), E) is expanding
if for some constantsα andβ and sufficiently largen the graphGn is (β ·m(n), α)
expanding. A family ofm(n) × n binary matrices{Mn}n∈N is expanding if the
family of bipartite graphs{Gn}n∈N represented by{Mn}n∈N (i.e., Mn is the ad-
jacency matrix ofGn) is expanding.

2.2 Some useful facts

We will rely on several standard facts. We begin with two facts regarding statistical
distance whose proofs can be found in [29].

Fact 2.2 For every distributionsX and Y and every randomized processA, we
haveSD(A(X), A(Y )) ≤ SD(X,Y ).

For jointly distributed random variablesA andB we writeB|A=a to denote the
conditional distribution ofB given thatA = a.

Fact 2.3 Suppose thatX = (X1, X2) andY = (Y1, Y2) are probability distribu-
tions on a setD × E such that: (1)X1 andY1 are identically distributed; and (2)
with probability greater than1−ε overx ← X1, we haveSD(X2|X1=x, Y2|Y1=x) ≤
δ. ThenSD(X, Y ) ≤ ε + δ.

For a randomized algorithmA and an integeri we defineAi to be the ran-
domized algorithm obtained by composingA exactly i times with itself; that is,
A1(x) = A(x) andAi(x) = A(Ai−1(x)), where in each invocation a fresh ran-
domness is used. The following fact (which is implicit in [1]) can be proved via a
hybrid argument.

Fact 2.4 Let{Xn} be a distribution ensemble, and letA be a randomized polynomial-
time algorithm. Suppose that{Xn} c≈ {A(Xn)}. Then for every polynomialp(·)
we have{Xn} c≈ {Ap(n)(Xn)}.

We letH2(·) denote the binary entropy function, i.e., for0 < p < 1, H2(p) def=
−p log(p) − (1 − p) log(1 − p). We will use the following well known bound on
the sum of binomial coefficients.

Fact 2.5 For 0 < p ≤ 1/2 we have
∑pn

i=0

(
n
i

) ≤ 2nH2(p).

Thebiasof a Bernoulli random variableX is defined to be|Pr[X = 1] − 1
2 |.

We will need the following fact which estimates the bias of sum of independent
random coins (cf. [23, 30]).
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Fact 2.6 Let X1, . . . , Xt be independent binary random variables. Suppose that
for some0 < δ < 1

2 and everyi it holds thatbias(Xi) ≤ δ. Then,bias(
⊕t

i=1 Xi) ≤
1
2(2δ)t.

3 LPRG in NC0 implies Hardness of Approximation

In the following we show that if there exists an LPRG inNC0 then there is no
polynomial-time approximation scheme (PTAS) for Max3SAT; that is, Max3SAT
cannot be efficiently approximated within some multiplicative constantr > 1. Re-
call that in the Max3SAT problem we are given a 3CNF boolean formula with
s clauses overn variables, and the goal is to find an assignment that satisfies
the largest possible number of clauses. The Max`-CSP problem is a general-
ization of Max3SAT in which instead ofs clauses we gets boolean constraints
C = {C1, . . . , Cs} of arity `. Again, our goal is to find an assignment that satis-
fies the largest possible number of constraints. (Recall that a constraintC of arity
` overn variables is aǹ -local boolean functionf : {0, 1}n → {0, 1}, and it is
satisfied by an assignment(σ1, . . . , σn) if f(σ1, . . . , σn) = 1.)

A simple and useful corollary of the PCP Theorem [5, 6] is the inapproxima-
bility of Max3SAT.

Theorem 3.1 Assume thatP 6= NP. Then, there is anε > 0 such that there is no
(1 + ε)-approximatation algorithm for Max3SAT.

We will prove a similar result under the (stronger) assumption that there exists
an LPRG inNC0. Our proof, however, does not rely on the PCP Theorem.

Theorem 3.2 Assume that there exists an LPRG inNC0. Then, there is anε > 0
such that there is no(1 + ε)-approximation algorithm for Max3SAT.

The proof of Theorem 3.2 follows by combining the following Fact 3.3 and
Lemma 3.4. The first fact shows that in order to prove that Max3SAT is hard to
approximate, it suffices to prove that Max`-CSP is hard to approximate. This
standard result follows by applying Cook’s reduction to transform every constraint
into a 3CNF.

Fact 3.3 Assume that, for some constants` ∈ N andε > 0, there is no polynomial
time(1+ ε)-approximation algorithm for Max̀-CSP. Then there is anε′ > 0 such
that there is no polynomial time(1 + ε′)-approximation algorithm for Max3SAT.

Thus, the heart of the proof of Theorem 3.2 is showing that the existence of an
LPRG inNC0

` implies that there is no PTAS for Max̀-CSP.
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Lemma 3.4 Let ` be a positive integer, andc > 1 be a constant such thatG :
{0, 1}n → {0, 1}cn is an LPRG which is computable inNC0

` . Then, there is no
1/(1 − ε)-approximation algorithm for Max̀ -CSP, where0 < ε < 1/2 is a
constant that satisfiesH2(ε) < 1− 1/c.

For ε = 1/10 (i.e.,≈ 1.1-approximation) the constantc = 2 will do, whereas
for ε = 0.49 (i.e.,≈ 2-approximation)c = 3500 will do.
Proof: Let s = s(n) = cn. Assume towards a contradiction that there exists
an 1/(1 − ε)-approximation algorithm for Max̀-CSP whereH2(ε) < 1 − 1/c.
Then, there exists a polynomial-time algorithmA that given aǹ -CSP instanceφ
outputs 1 ifφ is satisfiable, and 0 ifφ is ε-unsatisfiable (i.e., if every assignment
fails to satisfy at least a fractionε of the constraints). We show that, given suchA,
we can “break” the LPRGG; that is, we can construct an efficient (non-uniform)
adversary that distinguishes betweenG(Un) andUs. Our adversaryBn will (de-
terministically) translate a stringy ∈ {0, 1}s into an `-CSP instanceφy with s
constraints such that the following holds:

1. If y ← G(Un) thenφy is always satisfiable.

2. If y ← Us then, with probability1− neg(n) over the choice ofy, no assign-
ment satisfies more than(1− ε)s constraints ofφy.

Then,Bn will run A on φy and will outputA(φy). The distinguishing advantage
of B is 1− neg(n) in contradiction to the pseudorandomness ofG.

It is left to show how to translatey ∈ {0, 1}s into an`-CSP instanceφy. We use
n boolean variablesx1, . . . , xn that represent the bits of an hypothetical pre-image
of y underG. For every1 ≤ i ≤ s we add a constraintGi(x) = yi whereGi is the
function that computes thei-th output bit ofG. SinceGi is an`-local function the
arity of the constraint is at most`.

Suppose first thaty ← G(Un). Then, there exists a stringσ ∈ {0, 1}n such
thatG(σ) = y and henceφy is satisfiable. We move on to the case wherey ← Us.
Here, we rely on the fact that such a randomy is very likely to be far from every
element in the range ofG. More formally, define a setBADn ⊆ {0, 1}s such
that y ∈ BADn if φy is (1 − ε)-satisfiable; that is, if there exists an assignment
σ ∈ {0, 1}n that satisfies at least(1− ε) fraction of the constraints ofφy. In other
words, the Hamming distance betweeny andG(σ) is at mostεs. Hence, all the
elements ofBADn areεs-close (in Hamming distance) to some string inIm(G).
Therefore, the size ofBADn is bounded by

|Im(G)| ·
εs∑

i=0

(
s

i

)
≤ 2n2H2(ε)s = 2(1+cH2(ε))n,
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where the first inequality is due to Fact 2.5. Letα
def= c− (1 + c ·H2(ε)) which is a

positive constant sinceH2(ε) < 1− 1/c. Hence, we have

Pr
y←Us

[φy is (1−ε) satisfiable] = |BADn|·2−s ≤ 2(1+cH2(ε))n−cn = 2−αn = neg(n),

which completes the proof.

Remark 3.5 Lemma 3.4 can tolerate some relaxations to the notion of LPRG. In
particular, since the advantage ofBn is exponentially close to 1, we can consider
an LPRG that satisfies a weaker notion of pseudorandomness in which the dis-
tinguisher’s advantage is bounded by1 − 1/p(n) for some polynomialp(n). In
Section 4 we consider additional cryptographic primitives that imply the inapprox-
imability of Max3SAT.

Lemma 3.4 implies the following corollary.

Corollary 3.6 Suppose there exists a PRG inNC0
` with an arbitrarylinear stretch;

i.e., for everyc > 0 there exists a PRGG : {0, 1}n → {0, 1}c·n ∈ NC0
` . Then,

Max`-CSP cannot be approximated to within any constantδ < 2 that is arbitrarily
close to 2.

Remark 3.7 Corollary 3.6 is tight, as any CSP problem of the formG(x) = y
(for anyy ∈ {0, 1}s) can be easily approximated within a factor of 2. To see this,
note that the functionGi(x) which computes thei-th output bit ofG must be bal-
anced, i.e.,Prx[Gi(x) = 1] = 1/2. (Otherwise, sinceGi ∈ NC0, the functionGi

has a constant bias and soG(Un) cannot be pseudorandom.) Therefore, a random
assignment is expected to satisfy 1/2 of the constraints of the instanceG(x) = y.
This algorithm can be derandomized by using the method of conditional expecta-
tions.

Papadimitriou and Yannakakis [27] defined a classMaxSNP, in which Max3SAT
is complete in the sense that any problem inMaxSNP has a PTAS if and only if
Max3SAT has a PTAS. Hence, we get the following corollary (again, without the
PCP machinery):

Corollary 3.8 Assume that there exists an LPRG inNC0. Then, all Max SNP
problems (e.g., Max-Cut, Max2SAT, Vertex Cover) do not have a PTAS.
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4 UsingNC0 Implementations of Other Cryptographic Prim-
itives

In the following we extend the results of the Section 3, and show that the inapprox-
imability of Max3SAT can be based onNC0 implementations of the following
primitives: (1) pseudoentropy generator that gains a linear amount of computa-
tional entropy; (2) string commitment of linear size; and (3) public-key encryption
whose ciphertext length is linear in the message length. We start by abstracting the
proof of Theorem 3.2. That is, we show that the following assumption imply the
inapproximability of Max3SAT.

Consider a pair of distribution ensemblesA andB, a parameterδ, and a con-
stantε. The assumption holds if (1)A is samplable byNC0 circuits; (2) the com-
putational distance betweenA andB is bounded byδ; and (3) the probability that
the outcome ofB will be ε-close to the support ofA is smaller than1 − δ. More
formally, we assume the following.

Assumption 4.1 There exist two distribution ensembles{An}n∈N and {Bn}n∈N
whereAn andBn are distributed over{0, 1}s(n), and the ensemble{An} is sam-
plable by anNC0 circuit family. There exists a functionδ(n) : N → [0, 1], and a
constantε > 0 such that the following holds:

1. {An} c≈δ(n) {Bn}. That is, every polynomial-size circuit family distin-
guishes{An} from {Bn} with advantage at mostδ(n) for sufficiently large
n.

2. With probability smaller than1 − δ(n) a stringb ← Bn is ε-close (in nor-
malized Hamming distance) to some string in the support ofAn. That is,
Prb←Bn [∃a ∈ support(An) s.t.dist(a, b) ≤ ε · s(n)] < 1 − δ(n), where
dist(a, b) denotes the Hamming distance between the stringsa andb.

This assumption is implied by the existence of an LPRG inNC0. Indeed, ifG :
{0, 1}n → {0, 1}cn is an LPRG inNC0 then Assumption 4.1 holds with respect to
An = G(Un), Bn = Ucn, δ(n) = 1/n and a constant0 < ε < 1/2 that satisfies
1 + c ·H2(ε) < c. (This is implicitly shown in the proof of Lemma 3.4.)

Lemma 4.2 Assumption 4.1 implies that there is no PTAS for Max3SAT.

Proof sketch: The proof is very similar to the proof of Lemma 3.4. Let
G ∈ NC0

` be the circuit that samples the distributionAn. Assume towards a con-
tradiction that the claim does not hold. Then, there exists an algorithmD that
given aǹ -CSP instanceφ outputs 1 ifφ is satisfiable, and 0 ifφ is ε-unsatisfiable.
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We use this procedure to distinguish{An} from {Bn} with advantage greater than
δ(n). Given a challengey ∈ {0, 1}s(n), we translate it into aǹ-CSP instanceφy

of the formG(x) = y, and outputD(φy). If y ← An thenφy is always satisfiable.
On the other hand, ify ← Bn then, with probability larger thanδ(n), the formula
φy is ε-unsatisfiable.

4.1 Pseudoentropy Generator

We now show that anNC0 implementation of a relaxed notion of LPRG implies
Assumption 4.1. In particular, instead of being pseudorandom, the distribution
G(Un) is only required to be computationally close to some distribution whose
min-entropy is (much) larger. Moreover, we allow a non-negligible distinguishing
advantage. This relaxation can be considered as a weak pseudoentropy generator
that gains a linear amount of computational entropy cf.[21, 7].

Lemma 4.3 (Weak LPRG in NC0 ⇒ inapproximability) Suppose that there ex-
ist anNC0 functionG : {0, 1}n → {0, 1}s(n) and a distribution ensemble{Bn},
such that:

• {G(Un)} c≈δ(n) {Bn} for someδ(n) such thatδ(n) ≤ 1− 2−o(s(n)).

• H∞(Bn)− n = Ω(s(n)).

Then, there is no PTAS for Max3SAT.

Proof: Let An
def= G(Un). We show thatAn, Bn, δ(n) and some constantε <

1/2 satisfy Assumption 4.1. Indeed, the only non-trivial part is item (2). Let
BADε,n ⊆ {0, 1}s(n) be the set of all strings which areε-close toIm(G). Then,

Pr
b←Bn

[b is ε-close toIm(G)] =
∑

y∈BADε,n

Pr
b←Bn

[b = y]

≤

|Im(G)| ·

εs(n)∑

i=0

(
s(n)

i

)
 · 2−H∞(Bn)

≤ 2n+s(n)·H2(ε)−H∞(Bn) ≤ 2−Ω(s(n)) < 1− δ(n),

where the second inequality is due to Fact 2.5, the third inequality holds for suf-
ficiently small (constant)ε, and the last inequality holds for sufficiently largen .

11



4.2 String Commitment

Another sufficient assumption is anNC0 implementation of a non-interactive string
commitment with a constant information rate, namely one in which the length of
the commitment is linear in that of the committed string. A non-interactive com-
mitment scheme is defined by a functionCOM : {0, 1}n×{0, 1}m(n) → {0, 1}s(n)

such that:

1. (Binding) For every pair of different stringsx, y ∈ {0, 1}n the supports of
COM(x,Um(n)) andCOM(y, Um(n)) are disjoint.

2. (Hiding) For every pair of string families{xn}n∈N and{yn}n∈N wherexn, yn ∈
{0, 1}n, we haveCOM(xn, Um(n))

c≈ COM(yn, Um(n)).

In fact, for our purpose we can relax the hiding property to beCOM(xn, Um(n))
c≈δ(n)

COM(yn, Um(n)) whereδ(n) = 1− 2−o(n).

Lemma 4.4 (Constant rate string commitment in NC0 ⇒ inapproximability)
Let c > 1 be a constant. Suppose that there exists a (non-interactive) commitment
schemeCOM : {0, 1}n × {0, 1}m(n) → {0, 1}c·n computable inNC0. Then, there
is no PTAS for Max3SAT.

Proof: Let ε be a sufficiently small constant for whichH2(ε)·c < 0.9. LetAn
def=

COM(Un, Um(n)) andBn
def= COM(0n, Um(n)). We show thatAn, Bn, δ(n) =

1 − 2−o(n) andε satisfy Assumption 4.1. Again, we focus on proving that the
second item of the assumption holds.

Fix somer ∈ {0, 1}m(n). There are at most
∑εcn

i=0

(
cn
i

) ≤ 2H2(ε)cn ≤ 20.9n

strings which areε-close toCOM(0n, r). Hence, by the binding property, we have

Pr[COM(0n, r) is ε-close tosupport(COM(Un, Um(n)))] ≤ 20.9n−n = 2−0.1n.

Thus,

Pr
r←Um(n)

[COM(0n, r) is ε-close tosupport(COM(Un, Um(n)))] ≤ 2−0.1n < 1−δ(n),

where the last inequality holds for sufficiently largen.

Public-Key Encryption. Suppose we have an error-free public-key encryption
scheme whose encryption algorithm is inNC0 and whose information rate is con-
stant (i.e., the ciphertext length is linear in the message length). Then, we can
construct a (collection of) constant-rateNC0 non-interactive commitments. (Set
COMe(x, r) def= Ee(x, r) whereEe(x, r) is the encryption function which encrypts
the messagex using the keye and randomnessr.) Hence, such a scheme also
implies the inapproximability of Max3SAT.
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5 A Construction of LPRG in NC0

5.1 Overview

We start with an informal description of our construction. Consider the following
distribution: fix a sparse matrixM ∈ {0, 1}m×n in which every row contains a
constant number of ones, multiply it with a randomn-bit vectorx, and add a noise
vectore ∈ {0, 1}m which is uniformly distributed over allm-bits vectors whose
Hamming weight isdµ ·me. (For concreteness, think ofm = 5n andµ = 0.1.)
That is, we consider the distribution̂Dµ(M) def= M · x + e, where all arithmetic is
overF2.

Consider the distribution̂Dµ+m−1(M) which is similar to the previous distri-
bution except that this time the noise vector is uniformly distributed overm-bit
vectors whose weight is(µ + 1/m) · m = µm + 1. Alekhnovich conjectured
in [1, Conjecture 1] that for a proper choice ofM these distributions are compu-
tationally indistinguishable. He also showed that if indeed this is the case, then
D̂µ(M) is pseudorandom; that is,̂Dµ(M) is computationally indistinguishable
from Um. Since the distribution̂Dµ(M) can be sampled (efficiently) by using
roughlyn+log

(
m

µ·m
) ≤ n+mH2(µ) random bits, it gives rise to a pseudorandom

generator with linear stretch (when the parameters are chosen properly).
We would like to samplêDµ(M) by anNC0 function. Indeed, since the rows

of M contains only a constant number of ones, we can easily compute the product
Mx in NC0 (recall thatM itself is fixed). Unfortunately, we do not know how to
sample the noise vectore by anNC0 function. To solve this, we change the noise
distribution. That is, we consider a slightly different distributionDµ(M) in which
each entry of the noise vectore is chosen to be 1 with probabilityµ (independently
of other entries). We adopt Alekhnovich’s conjecture to this setting; namely, we as-
sume thatDµ(M) cannot be distinguished efficiently fromDµ+m−1(M). (In fact,
the new assumption is implied by the original one. See Appendix A.) Similarly to
the previous case, we show that under this assumptionDµ(M) is pseudorandom.

Now, wheneverµ = 2−t for some integert, we can sample each bit of the
noise vector by taking the product oft random bits. Hence, in this caseDµ(M)
is samplable inNC0 (as we think ofµ as a constant). The problem is that our
NC0 procedure which samplesDµ(M) consumes more bits than it produces (i.e.,
it consumesn + t · m bits and producesm bits). Hence, we lose the stretch. To
solve this, we note that most of the entropy of the seed was not used. Thus, we
can gain more output bits by applying a randomness extractor to the seed. To be
useful, this randomness extractor should be computable inNC0. We construct such
an extractor by relying on the construction ofε-biased generator inNC0 of [23].

For ease of presentation, we describe our construction in a non-uniform way.
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We will later discuss a uniform variant of the construction.

5.2 The Assumption

Let m = m(n) be an output length parameter wherem(n) > n, let ` = `(n) be a
locality parameter (typically a constant), and let0 < µ < 1/2 be a noise parameter.
LetMm,n,` be the set of allm× n matrices overF2 in which each row contains at
most` ones. For a matrixM ∈ Mm,n,` denote byDµ(M) the distribution of the
randomm-bit vector

Mx + e,

wherex ← Un ande ∈ {0, 1}m is a random error vector in which each entry is
chosen to be 1 with probabilityµ (independently of other entries), and arithmetic
is overF2. The following assumption is a close variant of a conjecture suggested
by Alekhnovich in [1, Conjecture 1].3

Assumption 5.1 For anym(n) = O(n), and any constant0 < µ < 1/2, there
exists a positive integer̀, and an infinite family of matrices{Mn}n∈N, Mn ∈
Mm(n),n,`, such that

Dµ(Mn)
c≈ Dµ+m(n)−1(Mn)

(Note that since we consider non-uniform distinguishers, we can assume thatMn

is public and is available to the distinguisher.)

Remark 5.2 Note that in Assumption 5.1 we do not require{Mn} to be polynomial-
time computable. We will later present a uniform construction based on the follow-
ing version of Assumption 5.1. For anym(n) = O(n), any constant0 < µ < 1/2,
and any infinite family ofm(n)×n binary matrices{Mn}n∈N, if {Mn} is expand-
ing thenDµ(Mn)

c≈ Dµ+m(n)−1(Mn). This assumption seems likely as argued by
Alekhnovich [1, Remark 1].

The following lemma shows that if the distributionDµ(Mn) satisfies the above
assumption then it is pseudorandom. (The proof is very similar to the proof of [1,
Theorem 3.1], and it is given here for completeness.)

3Our assumption is essentially the same as Alekhnovich’s. The main difference between the two
assumptions is that the noise vectore in [1] is a random vector of weight exactlydµme, as opposed
to our noise vector whose entries are chosen to be 1 independently with probabilityµ. In Appendix A
we show that our assumption is implied by Alekhnovich’s assumption. Intuitively, the implication
follows from the fact that our noise vectors can be viewed as a convex combination of noise vectors
of fixed weight. We do not know whether the converse implication holds. Indeed, a distributionD
which can be described as a convex combination of distributionsD1, . . . , Dn may be pseudorandom
even if each of the distributionsDi is not pseudorandom.
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Lemma 5.3 For any polynomialm(n) and constant0 < µ < 1/2, and any infinite
family,{Mn}n∈N, of m(n)× n matrices overF2, if Dµ(Mn)

c≈ Dµ+m(n)−1(Mn),
thenDµ(Mn)

c≈ Um(n).

Proof: Let m = m(n). Let rn denote the distribution of anm-bit vector in
which each entry is chosen to be 1 with probabilityc/m (independently of other
entries) wherec is the constant1/(1− 2µ). As shown next, we can write

Dµ+m−1(Mn) ≡ Dµ(Mn) + rn. (1)

To see this, lete, e′ ∈ {0, 1}m be noise vectors of rateµ, µ + 1/m respectively.
Then, to prove Eq. 1 it suffices to show thate′ ≡ e + rn. Indeed, the entries of
e + rn are iid Bernoulli random variables whose success probability is

µ · (1− (m(1− 2µ))−1) + (1− µ) · (m(1− 2µ))−1 = µ + m(n)−1.

Now, by Eq. 1 and the lemma’s hypothesis, we have

Dµ(Mn)
c≈ Dµ(Mn) + rn. (2)

Let ri
n be the distribution resulting from summing (overFm

2 ) i independent samples
from rn. Let p(·) be a polynomial. Then, by Fact 2.4, we get that

Dµ(Mn)
c≈ Dµ(Mn) + rp(n)

n . (3)

Recall thatrn is a vector of iid Bernoulli random variables whose success prob-
ability is Θ(1/m). Hence, for some polynomialp(·) (e.g.,p(n) = nm) it holds
that

rp(n)
n

s≈ Um(n). (4)

(To see this, note thatrp(n)
n is a vector of iid Bernoulli random variables whose

success probability is, by Fact 2.6,1/2± (1/2−Θ(1/m))p(n) = 1/2± neg(n).)
By combining Eq. 3 and 4, we have

Dµ(Mn)
c≈ Dµ(Mn) + rp(n)

n

s≈ Dµ(Mn) + Um(n) ≡ Um(n),

and the lemma follows.
By combining Assumption 5.1 and Lemma 5.3, we get the following.

Proposition 5.4 Suppose that Assumption 5.1 holds. Then, for anym(n) = O(n),
and any constant0 < µ < 1/2, there exists a constant` ∈ N, and an infinite family
of matrices{Mn}n∈N whereMn ∈Mm(n),n,` such thatDµ(Mn)

c≈ Um(n).

Remark 5.5 If the restriction on the density of the matricesMn is dropped, the
above proposition can be based on the conjectured (average case) hardness of de-
coding a random linear code (cf., [9, 19]). In fact, under the latter assumption we
have thatDµ(Mn)

c≈ Um(n) for mostchoices ofMn’s.
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5.3 The Construction

From here on, we letµ = 2−t for somet ∈ N. Then, we can sample each bit of the
error vectore by taking the product oft independent random bits. This naturally
gives rise to anNC0 function whose output distribution is pseudorandom, namely,

fn(x, y) = Mnx + E(y)

where

x ∈ {0, 1}n, y ∈ {0, 1}t·m(n), E(y) =




t∏

j=1

yt·(i−1)+j




m(n)

i=1

. (5)

Sincefn(Un, Ut·m(n)) ≡ Dµ(Mn), the distributionfn(Un, Ut·m(n)) is pseudo-
random under Assumption 5.1 (when the parameters are chosen appropriately).
Moreover, the locality offn is ` + t = O(1). However,fn is not a pseudorandom
generator as it usesn + t · m(n) input bits while it outputs onlym(n) bits. To
overcome this obstacle, we note that most of the entropy ofy was not “used”. In-
deed, we use thet ·m(n) random bits ofy to sample the distributionE(y) whose
entropy is onlym(n) · H2(2−t) < (t + 2) · 2−t ·m(n). Hence, we can apply an
extractor to regain the lost entropy. Of course, in order to get a PRG inNC0 the
extractor should also be computed inNC0. Moreover, to get a linear stretch we
should extract almost all of thet · m(n) random bits fromy while investing less
thanm additional random bits. In the following, we show that such extractors can
be implemented by usingε-biased generators.

First, we show that the distribution ofy givenE(y) contains (with high proba-
bility) a lot of entropy. In the following we letm = m(n).

Lemma 5.6 Let y ← Ut·m andE(y) be defined as in Eq. 5. Denote by[y|E(y)]
the distribution ofy given the outcome ofE(y). Then, except with probability
e−(2−tm)/3 over the choice ofy, it holds that

H∞([y|E(y)]) ≥ (1− δ(t)) · tm, (6)

whereδ(t) = 2−Ω(t).

Proof: We view E(y) as a sequence ofm independent Bernoulli trials, each
with a probability2−t of success. Recall thaty is composed ofm blocks of length
t, and that thei-th bit of E(y) equals the product of the bits in thei-th block of
y. Hence, wheneverE(y)i = 1 all the bits of thei-th block ofy equal to 1, and
whenE(y)i = 0 the i-th block ofy is uniformly distributed over{0, 1}t \ {

1t
}

.
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Consider the case in which at most2 · 2−tm components ofE(y) are ones. By
a Chernoff bound, the probability of this event is at least1 − e−(2−tm)/3. In this
case,y is uniformly distributed over a set of size at least(2t−1)(1−2−t+1)m. Hence,
conditioning on the event that at most2 · 2−tm components ofE(y) are ones, the
min-entropy of[y|E(y)] is at leastm(1− 2−t+1) log(2t − 1) ≥ tm(1− δ(t)), for
δ(t) = 2−Ω(t).

ε-biased generators can be used to extract random bits from distributions that
contain sufficient randomness. Extractors based onε-biased generators were pre-
viously used in [13].

Lemma 5.7 ([13, Lemma 4]) Letg : {0, 1}n → {0, 1}s be anε-biased generator,
and letXs be a random variable taking values in{0, 1}s whose min-entropy is at
least(1− δ) · s, for someδ ≥ 0. Then,

SD((g(Un) + Xs), Us) ≤ ε · 2δ·s/2−1/2 ,

where vector addition is taken overF2.

The above lemma follows directly by analyzing the affect of a random step
over a Cayley graph whose generator set is anε-biased set (cf. [20, Lemma 2.3]
and [24, 3]).

Recently, Mossel et al. [23] constructed anε-biased generator inNC0
5 with an

arbitrary linear stretch and exponentially small bias.

Lemma 5.8 ([23, Thm. 14]) For every constantc, there exists a (non-explicit)ε-
biased generatorg : {0, 1}n → {0, 1}cn in NC0

5 whose bias is at most2−bn/c4

(whereb > 0 is some universal constant that does not depend onc).

In Section 5.4 we provide an explicit version of the above lemma in which
the bias is only2−n/polylog(c). The price we pay is in the locality which grows
polylogarithmically with the stretch constantc. (See Theorem 5.12.)

We can now describe our LPRG.

Construction 5.9 Let t and ` be positive integers, andc, k > 1 be real numbers
that will effect the stretch factor. Letm = kn and let{Mn ∈ Mn,m,`} be an
infinite family of matrices. Letg : {0, 1}tm/c → {0, 1}tm be theε-biased generator
promised by Lemma 5.8. We define the function

Gn(x, y, r) = (Mnx + E(y), g(r) + y),

wherex ∈ {0, 1}n, y ∈ {0, 1}t·m, r ∈ {0, 1}t·m/c, E(y) =
(∏t

j=1 yt·(i−1)+j

)m

i=1
.

Thus,Gn : {0, 1}n+tm+ tm
c → {0, 1}m+tm.
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Observe thatGn is anNC0 function. We show that if the parameters are chosen
properly thenGn is an LPRG.

Lemma 5.10 Under Assumption 5.1, there exist constantst, ` ∈ N, constants
c, k > 1, and a family of matrices{Mn ∈ Mn,m,`} such that the functionGn

defined in Construction 5.9 is an LPRG.

Proof: Let k > 1 be some arbitrary constant andm = m(n) = kn. Let c andt
be constants such that:

c = 2t/(1− 1/k)

and

∆ def= t

(
b

c5
− δ(t)

)
> 0, (7)

where δ(·) is the negligible function from Eq. 6 andb is the bias constant of
Lemma 5.8. Such constantsc and t do exist sinceδ(t) = 2−Ω(t) while b/c5 =
Θ(1/t5). Let ` ∈ N be a constant and{Mn ∈ Mn,m,`} be an infinite family of
matrices satisfying Assumption 5.1.

First, we show thatGn has linear stretch. The input length ofGn is n + tm +
tm/c = (tk + k/2 + 1/2) · n. The output length is(t + 1) ·m = (tk + k) · n.
Hence, sincek > 1, the functionGn has a linear stretch.

Let x, y andr be uniformly distributed over{0, 1}n, {0, 1}t·m and{0, 1}t·m/c

respectively. We prove that the distributionGMn(x, y, r) is pseudorandom. By
Fact 2.3 and Lemmas 5.6, 5.7 and 5.8 it holds that

SD((E(y), y + g(r)), (E(y), Ut·m)) ≤ e−(2−tm)/3 + 2−b·(tm/c)/c4 · 2tm·δ(t)/2−1/2

≤ e−(2−tm)/3 + 2(−b/c5+δ(t))·tm

≤ e−(2−tm)/3 + 2−∆m = neg(m) = neg(n),

where the last inequality is due to Eq. 7. Therefore, by Fact 2.2 and Proposition 5.4,
we get that

(Mnx+E(y), g(r)+y)
s≈ (Mnx+E(y), Ut·m) ≡ (D2−t(Mn), Ut·m)

c≈ (Um, Ut·m),

and the lemma follows.
By the above lemma we get a construction of LPRG inNC0 from Assump-

tion 5.1. In fact, in [4, Thm. 6.5] it is (implicitly) shown that such an LPRG can be
transformed into an LPRG whose locality is 4. More precisely, [4] prove that for
some (small) constantc, any PRGG : {0, 1}n → {0, 1}n+s(n) such that each of
its output bits is computable by anNC1 circuit of sizel(n) can be transformed into
a PRGĜ : {0, 1}n+s(n)·l(n)c → {0, 1}n+s(n)·l(n)c+s(n) in NC0

4. Typically in [4],
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l(n) is superconstant and so the stretchs(n) of the resulting generator is onlysub-
linear in its input lengthn+s(n) · l(n)c. However, whenG ∈ NC0 each output bit
is computable by a constant size circuit and sol(n) = O(1). Therefore, ifG is an
LPRG inNC0, i.e.,s(n) = Θ(n) andl(n) = O(1), then the stretch of the resulting
PRG which iss(n) = Θ(n) is still linear in its input lengthn+O(n)+O(n)·O(1).
Hence, we have:

Theorem 5.11 Under Assumption 5.1, there exists an LPRG inNC0
4.

Mossel et al. [23] showed that a PRG inNC0
4 cannot achieve a superlinear stretch.

Hence, Theorem 5.11 is essentially optimal with respect to stretch.

Remarks on Theorem 5.11.

1. (Uniformity) Our construction uses two non-uniform advices: (1) a family
of goodε-biased generators inNC0 as in Lemma 5.8; and (2) a family of
matrices{Mn} satisfying Assumption 5.1. In Section 5.4 we eliminate the
use of the first advice by proving a uniform version of Lemma 5.8. We can
also eliminate the second advice and construct an LPRG inuniform NC0

4

by using an explicit variant of Assumption 5.1. In particular, we follow
Alekhnovich (cf. [1, Remark 1]) and conjecture that any family of matrices
{Mn} that represent graphs with good expansion satisfies Assumption 5.1.
Hence, our construction can be implemented by using an explicit family of
asymmetric constant-degree bipartite expanders such as the one given in [11,
Theorem 7.1].

2. (The stretch of the construction) Our techniques do not yield a PRG withsu-
perlinearstretch inNC0. To see this, consider a variant of Assumption 5.1
in which we allowm(n) to be superlinear. If we letµ(n) to be a constant,
then, by information-theoretic arguments, we needΩ(m(n)) random bits to
sample the noise vector (i.e., the entropy of the noise vector isΩ(m(n))),
and so we get only linear stretch. On the other hand, if we setµ(n) to be
subconstant, then the noise distribution cannot be sampled inNC0 (as any
bit of anNC0-samplable distribution depends on a constant number of ran-
dom bits). This problem can be bypassed by extending Assumption 5.1 to
alternative noise models in which the noise is not independently and iden-
tically distributed. However, it is not clear how such a modification affects
the hardness assumption. (Also note that we do not know how to reduce the
locality of a superlinear PRG inNC0 while preserving its superlinear stretch.
In particular, applying the transformations of [4] to such a PRG, will result
in a linear PRG with locality 4.)
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5.4 ε-Biased Generators in UniformNC0

In [23, Theorem 14], Mossel et al. constructed anε-biased generator innon-
uniform NC0

5 with an arbitrary linear stretchcn and biasε = 2−Ω(n/c4).4 We
generalize their construction and provide a complementary result which gives a
better tradeoff between the bias and stretch and allows a uniform implementation.
However, the locality of our construction grows with the stretch constant.

Theorem 5.12 For every constantc, there exist anε-biased generatorg : {0, 1}n →
{0, 1}cn in uniform NC0 whose bias isε = 2−n/polylog(c) and its locality is
` = polylog(c).

As in [23], our generator is obtained by XORing the outputs of two functions: a
generatorg(s) which is robust against linear functions that involve small number of
output bits (“small tests”) and a generatorg(l) which is robust against linear func-
tions that involve large number of output bits (“large tests”). More precisely, for a
random variableX = (X1, . . . , Xn) ranging over{0, 1}n, a setS ⊆ {1, . . . , n},
and an integer0 < k ≤ n, we define

biasS(X) def=

∣∣∣∣∣Pr[
⊕

i∈S

Xi = 0]− 1
2

∣∣∣∣∣ ,

biask(X) def= max
S⊆{1,...,n},|S|=k

biasS(X),

bias(X) def= max
0<k≤n

biask(X) = max
S⊆{1,...,n},S 6=∅

biasS(X) .

Then, we prove Theorem 5.12 by using the following two lemmas (whose proofs
is postponed to Sections 5.4.1, 5.4.2):

Lemma 5.13 (Generator against small tests)For every constantc, there exist a
functiong(s) : {0, 1}n → {0, 1}cn in uniformNC0

polylog(c) such that for sufficiently

largen’s and every0 < k ≤ Ω(n/polylog(c)), we havebiask(g(s)(Un)) = 0.

Lemma 5.14 (Generator against large tests)For every constantc, there exist a
functiong(l) : {0, 1}n → {0, 1}cn in uniformNC0

O(log(c)) such that for sufficiently

largen’s and everyk ∈ {1, . . . , cn}, we havebiask(g(l)(Un)) ≤ 2−k/5.

Given these two lemmas we can prove Theorem 5.12.
Proof: (of Theorem 5.12) Letc be a constant. Letg(s) : {0, 1}n → {0, 1}2cn

andg(l) : {0, 1}n → {0, 1}2cn be the generators promised by Lemmas 5.13, 5.14

4In fact,cn can be slightly super-linear.
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(instantiate with the constant2c). Then, the functiong(x, y) = g(s)(x) ⊕ g(l)(y)
satisfies Theorem 5.12. To see this, observe that for anyindependentrandom vari-
ablesX andY and any non-uniform statistical testT , the success probability ofT
on the random variableX ⊕ Y is not larger than its success probability onX (or
Y ).

5.4.1 Proof of Lemma 5.13

Let M be anm × n matrix overF2 such that every subset ofk rows of M are
linearly independent. Then, it is well known that the functionf : {0, 1}n →
{0, 1}m that mapsx into M · x is ak-wise independent generator (cf. [2]). That
is, for every0 < j ≤ k, we havebiasj(f(Un)) = 0. If each row ofM contains at
most` ones then the functionf is in NC0

` . It turns out that there exists a (uniform)
family of such matrices whose parameters match the parameters of Lemma 5.13.
Specifically, we use the following result which is a corollary of [11, Theorem 7.1].

Lemma 5.15 ([11]) For every constantc there exists a family of matrices{Mn}n∈N
such that

• Mn is ancn× n matrix overF2.

• Every row ofMn has at mostpolylog(c) ones.

• Every subset ofk = Ω(n/polylog(c)) rows ofMn are linearly independent.

• Mn can be constructed in timepoly(n).

Hence, the generator for small tests can be defined asg(s)(x) = Mn · x.

5.4.2 Proof of Lemma 5.14

We will need the following standard claim that can be proved via the probabilistic
method (see [17, Lecture 8, Prop. 2.1]).

Claim 5.16 For sufficiently largen, there exists anε-biased generatorf : {0, 1}n →
{0, 1}2n/2

whose bias isε = 2−n/4.

We can now prove Lemma 5.14. Letc be the desired stretch constant. Let
` = 4 log c. Let m = 2`/2 andf : {0, 1}` → {0, 1}m be anε-biased generator
whose bias isε = 2−`/4 as promised by Claim 5.16. (Sincec is a constant, such
f can be found by using exhaustive search.) Our generator will partition itsn-bit
input x into b = bn/`c blocksx(1), . . . , x(b) of length` each. Then, the generator
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will apply f to each block separately, and concatenate the result. Namely,g(l)(x) def=
(f(x(1)), . . . , f(x(b))). The locality ofg(l) is ` and its output length isbm =⌊

c2n
4 log c

⌋
which is larger thancn for sufficiently largec.

We now analyze the bias ofg(l). To simplify notation, we index the outputs
of g(l) by pairs(j, i) and letg(l)

j,i (x) = fi(x(j)) (where1 ≤ j ≤ b, 1 ≤ i ≤ m
andfi(x) denotes thei-th output bit off(x)). Let S ⊆ {1, . . . b} × {1, . . . m} be
a linear test of cardinalityk. Let Sj be the restriction ofS to the indices of the
j-th block, i.e.,Sj = {i : (j, i) ∈ S}. Then,S1, . . . , Sb is a partition ofS. Let
T = {i : Si 6= ∅} ⊆ {1, . . . , b}. Hence, forx ← Un, we have

biasS(g(l)(x)) = bias


⊕

j∈T

⊕

i∈Sj

fi(x(j))


 .

Sincef is anε-biased generator, for eachj ∈ T we have thatbias(
⊕

i∈Sj
fi(x(j))) ≤

ε. Sinceg(l)(x) is partitioned into blocks of length̀, the testS contains output bits
coming from at leastk/` different blocks and so|T | ≥ k/`. Thus we can use
Fact 2.6 to upper boundbiasS(g(l)(x)) by

1
2
(2ε)k/` ≤ 1

2
(2−`/4+1)k/` ≤ 1

2
(2−`/5)k/` ≤ 2−k/5,

as required.

6 The Necessity of Expansion

As pointed out in Section 5, our construction of LPRG makes use of expander
graphs. This is also the case in several constructions of “hard functions” with low
locality (e.g., [15, 23, 1]). We argue that this is not coincidental, at least in the
case of PRGs. Namely, we show that the input-output graph of any LPRG inNC0

enjoys some expansion property. (In fact, this holds even in the case ofε-biased
generators.) Then, we use known lower bounds for expander graphs to rule out
the possibility of exponentially strong PRG with superlinear stretch inNC0. These
results are discussed from a wider perspective in Section 6.2. We start with the
technical results.

6.1 Actual Results

For a functionG : {0, 1}n → {0, 1}s, we define the input-output graphHG =
((Out = [s], In = [n]), E) to be the bipartite graph whose edges correspond to

22



the input-output dependencies inG; that is,(i, j) is an edge if and only if thei-th
output bit ofG depends on thej-th input bit. WhenG is a function family,HG

denotes a graph family.

Proposition 6.1 Let G : {0, 1}n → {0, 1}s(n) be a PRG. Then, the graph (fam-
ily) HG = ((Out = [s(n)], In = [n]), E) enjoys the following output expansion
property: for every constantc and sufficiently largen, every set of output vertices
T ⊆ Out whose size is at mostc log n touches at least|T | input vertices.

Proof: Assume towards a contradiction that there exists a small setT of output
vertices that touches less than|T | input vertices. LetGT (·) be the restriction of
G to the output bits ofT . Then, the functionGT (·) cannot be onto as it depends
on less than|T | input bits. Therefore, there exists a stringz ∈ {0, 1}|T | such
that Pr[GT (Un) = z] = 0. Hence, a (non-uniform) distinguisher which given
y ∈ {0, 1}s(n) checks whetheryT = z, distinguishes betweenG(Un) andUs(n)

with advantage2−c log n = 1/nc, in contradiction to the pseudorandomness ofG.

More generally, ifG is ε-hard (i.e., cannot be broken by any efficient adversary
with advantageε), then every set oft ≤ log(1/ε) output vertices touches at leastt
input vertices. This claim also extends to the case ofε-biased generators.

Proposition 6.2 LetG : {0, 1}n → {0, 1}s be anε-biased generator. Then, every
set oft ≤ log(1/ε) output vertices inHG touches at leastt input vertices.

Proof: Assume towards a contradiction that there exists a setT of output vertices
of sizet ≤ log(1/ε) that touches less thant input vertices. ThenGT (Un) 6≡ Ut.
Therefore, there exists a linear functionL : Ft

2 → F2 that distinguishes between
GT (Un) andUt. Namely,|Pr[L(GT (Un)) = 1] − Pr[L(Ut) = 1]| 6= 0. Since
the distributionGT (Un) is sampled by less thant random bits, the distinguishing
advantage ofL is larger than2−t ≥ ε, and soG is notε-biased in contradiction to
the hypothesis.

The above propositions show that whenG is anε-hard PRG (or evenε-biased
generator), the bipartite graphHG = ((Out = [s(n)], In = [n]), E) enjoys some
output expansion property. Radhakrishnan and Ta-Shma [28] obtained some lower
bounds for such graphs.

Proposition 6.3 ( [28], Theorem 1.5)Let H = ((V1 = [s], V2 = [n]), E) be a
bipartite graph in which every setS ⊆ V1 of cardinality k touches at leastm

vertices fromV2. Then, the average degree ofV1 is at leastΩ
(

log(s/k)
log(m/n)

)

By combining this lower bound with the previous propositions we derive the
following limitation on the strength of PRGs with superlinear stretch inNC0.
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Corollary 6.4 Let G : {0, 1}n → {0, 1}s be a 2−t-hard PRG (or2−t-biased

generator). Then, the locality ofG is at leastΩ
(

log(s/t)
log(n/t)

)
. In particular, there is

no 2−Ω(n)-hard PRG, or even a2−Ω(n)-biased generator, with superlinear stretch
in NC0.

6.2 Discussion

To put the above results in context, some background on unbalanced bipartite ex-
panders is needed. Consider a bipartite graphH = ((Out = [s], In = [n]), E) in
which each of the output vertices is connected to at mostd inputs. Recall thatH is a
(K, α)-expander if every set of output verticesS of size smaller thanK has at least
α · |S| input neighbors. We say that the expander is unbalanced ifs > n. Unbal-
anced expanders have had numerous applications in computer science (see details
and references in [11]). Today, there are only two such constructions [31, 11]. Ta-
Shma et al. [31] considered the highly unbalanced case in whichn < o(s). They
constructed a(K, α)-expander with degreed = polylog(s), expansion threshold
K < sε and almost optimal expansion factorα = (1− δ)d, whereδ > 0 is an ar-
bitrary constant. Capalbo et al. [11] present a construction for the setting in which
n is an (arbitrary) constant fraction ofs (i.e., s = n + Θ(n)). They construct a
(K, α)-expander with (nearly) optimal parameters; Namely, the degreed of the
graph is constant, and its expansion parameters areK = Ω(s) andα = (1 − δ)d,
whereδ > 0 is an arbitrary constant.

In Section 6.1 we showed that ifG : {0, 1}n → {0, 1}s is a PRG then its
input-output graphHG = ((Out = [s], In = [n]), E) is an(ω(log n), 1)-expander.
This property is trivial to satisfy when the output degree ofHG is unbounded (as in
standard constructions of PRGs in which every output bit depends on all the input
bits). It is also easy to construct such a graph with constant output degree when
s(n) is not much larger thann (as in theNC0 constructions of [4]).

To see this, consider the following bipartite graph. First, letC = ((O, I), D)
be a bipartite graph over[2n + 1] whose output vertices are the odd integers,
its input vertices are the even integers, and its edges correspond to pairs of con-
secutive integers, i.e.,O = {1, 3, . . . , 2n + 1}, I = {2, 4, . . . , 2n}, andD =
{(1, 2), (2, 3), . . . , (2n, 2n + 1)}. That is,C is a chain of length2n + 1. Let
m > n. Takem disjoint copies ofC, and letOi (resp.Ii) be the set of output (resp.
input) vertices of thei-th copy. In addition, addn input verticesI0 = [n] and match
them to the firstn vertices of each of the output clusters (i.e., connect thej-th ver-
tex ofI0 to the vertex2j − 1 of eachOi). Let H = ((Out = O1 ∪ · · · ∪Om, In =
I1 ∪ · · · ∪ Im ∪ I0), E). (See Figure 1.) Clearly,H hasm(n + 1) output vertices,
mn + n input vertices, and each output vertex is connected to at most3 inputs. It

24



is not hard to verify thatH is (n2, 1)-expanding. However, the number of outputs
is only slightly larger than the number of inputs; i.e.,|Out| − |In| = m − n < m
which is sublinear in|In| whenn is non-constant.

1

Figure 1: The graphH with n = 2 andm = 3. Black circles denote output vertices
while empty circles denote input vertices.

However, when the locality of the pseudorandom generatorG is constant and
the stretch is linear,HG is a sparse bipartite graph havingn input vertices,s(n) =
n+Ω(n) output vertices, and a constant output degree. It seems that it is not trivial
to explicitly construct such a graph that achieves(ω(log n), 1)-expansion. (Indeed,
the construction of [11] gives similar graphs whose expansion is even stronger,
but this construction is highly non-trivial.) Hence, any construction of LPRG in
NC0 defines a non-trivial combinatorial structure. In particular, one cannot hope
that “simple”deterministictransformations, such as those given in [4], will yield
LPRGs inNC0.

Note that an exponentially strong PRG (or exponentially strongε-biased gen-
erator) with linear stretch gives an(Ω(n), 1)-expander graph whose output size
grows linearly with its input size. Indeed, the exponentially strongε-biased gener-
ator of [23] is based on a similar (but slightly stronger) unbalanced expander. The
above argument shows that such an ingredient is necessary.
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A Alekhnovich’s Assumption Implies Assumption 5.1

We show that Alekhnovich’s Assumption [1, Conjecture 2, Remark 1] implies As-
sumption 5.1. The main difference between the two assumptions is that the noise
vectore in [1] is a random vector of weight exactlydµme, as opposed to our noise
vector whose entries are chosen to be 1 independently with probabilityµ. The im-
plication follows from the fact that our noise vectors can be viewed as a convex
combination of noise vectors of fixed weight. We give the details below.

Recall that for anm × n matrix M we let D̂µ(M) denote the distribution of
M · x + e, wherex is a randomn-bit vector ande is a noise vector which is
uniformly distributed over allm-bits vectors whose Hamming weight isµ ·m. The
distributionDµ(M) def= M · x + e is analogous tôDµ(M), except that each entry
of the noise vectore is chosen to be 1 with probabilityµ (independently of other
entries).

Assumption A.1 (Alekhnovich’s Assumption)For anym(n) = O(n), there ex-
ists an infinite family of matrices{Mn}n∈N, Mn ∈ Mm(n),n,3, such that for any
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constant0 < µ0 < 1/2, and functionµ(n) that satisfiesµ0 < µ(n) < 1/2 for
everyn, it holds that

D̂µ(n)(Mn)
c≈ D̂µ(n)+m(n)−1(Mn).

Fix a matrix family {Mn}n∈N of size m(n) × n wherem(n) is an integer
valued function. We will prove that Assumption A.1 instantiated with the family
{Mn}n∈N implies Assumption 5.1 instantiated with the same family of matrices.
To do this we use the following two intermediate assumptions.

Assumption A.2 For any constant0 < µ0 < 1/2, and functionµ(n) that satisfies
µ0 < µ(n) < 1/2 for all n’s, D̂µ(n)(Mn)

c≈ Um(n).

Assumption A.3 For any constant0 < µ < 1/2, we haveDµ(Mn)
c≈ Um(n).

In [1, Thm. 3.1] it is shown that Assumption A.1 implies Assumption A.2.
Hence to prove that Assumption A.1 implies Assumption 5.1 it suffices to show
that: (1) Assumption A.2 implies Assumption A.3; and (2) Assumption A.3 implies
Assumption 5.1.

Lemma A.4 Assumption A.2 implies Assumption A.3.

Proof: Suppose that Assumption A.3 does not hold. Then, for some constant
0 < µ < 1/2, the distributionDµ(Mn) is not pseudorandom. That is, there exists
a polynomial-size circuit family{An} and a polynomialq(·) such that

Pr[An(Dµ(Mn)) = 1]− Pr[An(Um(n)) = 1] > 1/q(n), (8)

for infinitely manyn’s. We will show that, for some constant0 < µ̂0 < 1/2,
and functionµ̂(n) that satisfieŝµ0 < µ̂(n) < 1/2, Assumption A.2 is violated.
Namely,Pr[An(D̂µ̂(n)(Mn)) = 1] − Pr[An(Um(n)) = 1] > 1/q′(n) for some
polynomialq′(·) and infinitely manyn’s.

Fix somen for which Eq. 8 holds, and letm = m(n). Letp
def= Pr[An(Dµ(Mn)) =

1] andp(k) def= Pr[An(D̂k/m(Mn)) = 1] for 0 ≤ k ≤ m. Let e ∈ {0, 1}m be a
random error vector in which each entry is chosen to be 1 with probabilityµ (inde-
pendently of other entries) and lett(k) be the probability thate contains exactlyk
ones. We can think of the distribution ofe as the outcome of the following process:
first choose0 ≤ k ≤ m with probabilityt(k), then choose a random noise vector
of weightk. Hence, we can write,

p =
m∑

k=0

p(k) · t(k).
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Let ε > 0 be a constant for whichµ · ε < 1/2. Then, by a Chernoff bound, it holds
that

∑

k<(1−ε)·µm

t(k)+
∑

k>(1+ε)·µm

t(k) = Pr

[∣∣∣∣∣
m∑

i=1

ei − µm

∣∣∣∣∣ > ε · µm

]
< 2e−ε2µm/3.

Hence, ∑

(1−ε)·µm≤k≤(1+ε)·µm

p(k) · t(k) > p− 2e−ε2µm/3.

Thus, by an averaging argument, there exists some(1−ε) ·µm ≤ k ≤ (1−ε) ·µm
for which

p(k) > p− 2e−ε2µm/3.

Let µ̂(n) bek/m and letµ̂0 be the constant(1 − ε) · µm/2. Then, by Eq. 8, we
have

Pr[An(D̂µ̂(n)(Mn)) = 1]−Pr[An(Um(n)) = 1] > 1/q(n)−2e−ε2µm/3 > 1/q′(n),

whereq′(·) is a polynomial. This completes the proof sinceµ̂0 < µ̂(n) < 1/2 for
everyn.

It is left to prove the following lemma.

Lemma A.5 If Assumption A.3 holds then Assumption 5.1 also holds with respect
to {Mn}n∈N.

Proof: As shown in the proof of Lemma 5.3 we can writeDµ+m−1(Mn) ≡
Dµ(Mn) + rn, wherern denotes the distribution of anm-bit vector in which each
entry is chosen to be 1 with probabilityc/m (independently of other entries) for
some constantc. Hence, by two invocations of Assumption A.3, we have

Dµ+m−1(Mn) ≡ Dµ(Mn) + rn
c≈ Um(n) + rn ≡ Um(n)

c≈ Dµ(Mn).
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