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Abstract

We consider the question of constructing cryptographic pseudorandom
generators (PRGs) iNC?, namely ones in which each bit of the output de-
pends on just a constant number of input bits. Previous constructions of such
PRGs were limited to stretching a seecdhdits ton + o(n) bits. This leaves
open the existence of a PRG with a linear (let alone superlinear) stretch in
NCP. In this work we study this question and obtain the following main
results:

1. We show that the existence of a linear-stretch PROVE implies
non-trivial hardness of approximation resulihout relying on PCP
machinery In particular, it implies that Max3SAT is hard to approxi-
mate to within some multiplicative constant.

2. We construct a linear-stretch PRGNC® under a specific intractabil-
ity assumption related to the hardness of decoding “sparsely gener-
ated” linear codes. Such an assumption was previously conjectured by
Alekhnovich (FOCS 2003).

*Preliminary version of this work appeared in the Proceedings of the 10th International Workshop
on Randomization and Computation (RANDOM 2006). Research supported by grants 1310/06 and
36/03 from the Israel Science Foundation.



1 Introduction

A cryptographic pseudorandom generator (PRG) [10, 33] is a deterministic func-
tion that stretches a short random seed into a longer string that cannot be distin-
guished from random by any polynomial-time observer. In this work, we study the
existence of PRGs that both (1) admit fast parallel computation and (2) stretch their
seed by a significant amount.

Considering the first goal alone, it was recently shown in [4] that the ultimate
level of parallelism can be achieved under most standard cryptographic assump-
tions. Specifically, any PRG iNC! (the existence of which follows, for example,
from the intractability of factoring) can be efficiently “compiled” into a PRG in
NC?, namely one where each output bit depends on just a constant number of in-
put bits. However, the PRGs produced by this compiler only stretch their seed by
a sublinear amount: from bits ton + O(n®) bits for some constant< 1. Thus,
these PRGs do not meet our second goal.

Considering the second goal alone, even a PRG that stretches its seed by just
one bit can be used to construct a PRG that stretches its seed by any polynomial
number of bits [16, Sec. 3.3.2]. However, all known constructions of this type are
inherently sequential. Thus, we cannot use known techniques for turniNg'an
PRG with a sublinear stretch into one with a linear, let alone superlinear, stretch.

The above state of affairs leaves open the existenceliokar-stretchPRG
(LPRG) inNC"; namely, one that stretches a seeddits inton + Q(n) output
bits! (In fact, there was no previous evidence for the existence of LPRGs even in
the higher complexity classC".) This question is the main focus of our work. The
qguestion has a very natural motivation from a cryptographic point of view. Indeed,
most cryptographic applications of PRGs either require a linear stretch (for exam-
ple Naor’s bit commitment scheme [25]), or alternatively depend on a larger stretch
for efficiency (this is the case for the standard construction of a stream cipher or
stateful symmetric encryption from a PRG, see [18]). Thus, the existence of an
LPRG inNC" would imply better parallel implementations of other cryptographic
primitives.

1.1 Our Contribution
LPRG in NCY implies hardness of approximation. We give a very different,

and somewhat unexpected, maotivation for the foregoing question. We observe that
the existence of an LPRG INC" directly implies non-trivial and useful hardness

!Note that arNC" LPRG can be composed with itself a constant number of times to yield an
NC° PRG with an arbitrary linear stretch.



of approximation results. Specifically, we show (via a simple argument) that an
LPRG inNC? implies that Max3SAT (and hence allaxSNP problems such as
Max-Cut, Max2SAT and Vertex Cover [27]) cannot be efficiently approximated to
within some multiplicative constant. This continues a recent line of work, initiated
by Feige [14] and followed by Alekhnovich [1], that provides simpler alternatives
to the traditional PCP-based approach by relying on stronger assumptions. Unlike
these previous works, which rely on very specific assumptions, our assumption
is of a more general flavor and may serve to further motivate the study of cryp-
tography inNC®. On the down side, the conclusions we get are weaker and in
particular are implied by the PCP theorem. In contrast, some inapproximability
results from [14, 1] could not be obtained using PCP machinery. It is instructive to
note that by applying our general argument to the sublinear-stretch PRG&’in

from [4] we only get “uninteresting” inapproximability results that follow from
standard padding arguments (assumigNIP). Furthermore, we do not know how

to obtain stronger inapproximability results based on a superlinear-stretch PRG in
NC°. Thus, our main question of constructing LPRGNI6" captures precisely
what is needed for this application.

Constructing an LPRG in NCY. We present a construction of an LPRGNI”
under a specific intractability assumption related to the hardness of decoding “sparsely
generated” linear codes. Such an assumption was previously made by Alekhn-
ovich in [1]. The starting point of our construction is a modified version of a PRG
from [1] that has a large output locality (that is, each output bit depends on many
input bits) but has a simple structure. We note that the output distribution of this
generator can be sampledNC; however the seed length of tHC® sampling
procedure is too large to gain any stretch. To solve this problem we observe that
the seed has large entropy even when the output of the generator is given. Hence,
we can regain the stretch by employing a randomness extrach¢inthat uses
a “sufficiently short” seed to extract randomness from sources with a “sufficiently
high” entropy. We construct the latter by combining the known construction of
randomness extractors frombiased generators [24, 8] with previous construc-
tions of e-biased generator itVC° [23]. Our LPRG can be implemented with
locality 4; the stretch of this LPRG is essentially optimal, as it is known that no
PRG with locality 4 can have superlinearstretch [23]. However, the existence of
superlinear-stretch PRG with possibly higher (but constant) locality remains open.
By combining the two main results described above, one gets non-trivial in-
approximability results under the intractability assumption from [1]. These (and
stronger) results werdirectly obtained in [1] from the same assumptiaithout
constructing an LPRG itNC?. Our hope is that future work will yield construc-
tions of LPRGs irNC® under different, perhaps more standard, assumptions, and



that the implications to hardness of approximation will be strengthened.

LPRG in NC" and Expanders. Finally, we observe that the input-output graph
of any LPRG inNC? enjoys some non-trivial expansion property. This connec-
tion implies that a (deterministic) construction of an LPR@V@® must use some
non-trivial combinatorial objects. (In particular, one cannot hope that “simple”
transformations, such as those given in [4], will yield LPRG®i@’.) The con-
nection with expanders also allows to rule out the existenegdnentiallystrong
PRGs withsuperlinearstretch inNC°.

1.2 Related Work

The existence of PRGs iNC? has been recently studied in [12, 23, 4]. Cryan
and Miltersen [12] observe that there is no PRGN (i.e., where each output

bit depends on at most two input bits), and prove that there is no PRGCth
achieving a superlinear stretch; namely, one that stretel#ts ton + w(n) bits.
Mossel et al. [23] extend this impossibility dC{. Viola [32] shows that an LPRG

in AC? cannot be obtained from a OWF via non-adaptive black-box constructions.
This result can be extended to rule out such a construction even if we start with a
PRG whose stretch is sublinear.

On the positive side, Mossel et al. [23] constructed (non-cryptographic)
biased generators with linear stretch and exponentially small bia&th Ap-
plebaum et al. [4] subsequently showed that, under standard cryptographic as-
sumptions, there are pseudorandom generatotsGR. However, these PRGs
have onlysublinear-stretch PRGs with linear stretch are known to exist (under
plausible assumptions) in the cla¥€! and even inTCY, e.g., [22, 26]. (Re-
call thatTC? is the class of functions computable by constant depth circuits con-
sisting of a polynomial number of threshold gates with unbounded fan-in; hence,
NC® ¢ AC® ¢ TC? C NCL)

The first application of average-case complexity to inapproximability was sug-
gested by Feige [14], who derived new inapproximability results under the as-
sumption that refuting 3SAT is hard on average on some natural distribution. In [1]
Alekhnovich continued this line of research. He considered the problem of deter-
mining the maximal number of satisfiable equations in a linear system chosen at
random, and made several conjectures regarding the average case hardness of this
problem. He showed that these conjectures imply Feige’'s assumption as well as
several new inapproximability results. While the works of Feige and Alekhnovich
derivednewinapproximability results (that were not known to hold under the as-
sumption that? # NP), they did not rely on the relation with a standard cryp-
tographic assumption or primitive, but rather used specific average case hardness



assumptions tailored to their inapproximability applications. A relation between
the security of a cryptographic primitive and approximation was implicitly used
in [23], where an approximation algorithm for Max2LIN was used to derive an
upper bound on the stretch of a PRG whose locality is 4.

Organization. The rest of this paper is structured as follows. We begin with a
discussion of notation and preliminaries (Section 2). In Section 3 we prove that an
LPRG inNC? implies that Max3SAT cannot be efficiently approximated to within
some multiplicative constant. Then in Section 4 we extend these results and show
how to derive the inapproximability of Max3SAT frolC" implementations of
other cryptographic primitives. In Section 5 we present a construction of an LPRG
in NC. This construction uses aiC° implementation of ar-biased generator

as an ingredient. A uniform construction of suchedniased generator is described

in Section 5.4. Finally, in Section 6, we discuss the connection between LPRG in
NCP to expander graphs.

2 Preliminaries
2.1 Basic Definitions

Probability notation. We useU,, to denote a random variable uniformly dis-
tributed over{0,1}". If X is a probability distribution, or a random variable,
we writex < X to indicate thatr is a sample taken fronX. Themin-entropyof

a random variabléX is defined adl,,(X) £ min, log(@). The statistical
distancebetween discrete probability distributiohsandY”, denotedSD(Y,Y”),

is defined as the maximum, over all functioAs of thedistinguishing advantage
|Pr[A(Y) = 1] — Pr[A(Y") = 1]|.

A functione(+) is said to benegligibleif ¢(n) < n™¢ for any constant > 0
and sufficiently large:. We will sometimes useeg(-) to denote an unspecified
negligible function. For two distribution ensembleX, },,cny and{Y;, }nen, We
write X,, = Y, if X,, andY,, are identically distributed, an&’,, ~ Y, if the
two ensembles argtatistically indistinguishablenamely,SD(X,,, Y,,) is negligi-
ble in n. A weaker notion of closeness between distributions is thatoafipu-
tational indistinguishability: We writeX, Q(g(n) Y, if for every (non-uniform)
polynomial-size circuit family{ A,, }, the distinguishing advantag®r|[A, (X,) =
1] — Pr[A,(Y,,) = 1]| is bounded by (n) for sufficiently largen. When the dis-
tinguishing advantag&n) is negligible, we simply writeX,, 2 Y. By definition,
X, =Y, implies thatX,, ~ Y,, which in turn implies thaf\,, ~ Y,,. Adistribution
ensemblg X, } ,en is said to begpseudorandonf X, ~ U,.
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We will use the following definition of a pseudorandom generator.

Definition 2.1 (Pseudorandom generator)A pseudorandom generator (PRG) is
a deterministic functiods : {0,1}* — {0, 1}* satisfying the following two condi-
tions:

e Expansion There exists atretch functions : N — N such thats(n) > n,
forall n € N, and|G(x)| = s(|z|) forall z € {0, 1}*.

e Pseudorandomnesshe ensemblefG(Uy,) ey and{Uy(,) }nen are com-
putationally indistinguishable.

Whens(n) = n + Q(n) we say thaty is alinear-stretctpseudorandom generator
(LPRG). By default, we requir€ to be polynomial time computable.

It will sometimes be convenient to define a PRG by an infinite family of func-
tions {G,, : {0,1}™™ — {0,1}*(™}, y, wherem(-) ands(-) are polynomials.
Such a family can be transformed into a single function that satisfies Definition 2.1
via padding. We will abuse notation and wrige: {0,1}™™ — {0,1}* to de-
note the family{G,, : {0,1}™(™ — {0,1}*"™},cn. We will also rely ore-biased
generators defined similarly to PRGs except that the pseudorandomness holds
only against linear functions ovéh. Namely, for a bias functioa : N — (0, 1)
we say thatG : {0,1}" — {0,1}*") is ane-biased generator if for every non-
constant linear functio : F3 — IF, and all sufficiently large:’s it holds that
[PL(G(U,)) = 1] - | < e(n).

Locality. We say thatf : {0,1}" — {0,1}° is c-local if each of its output bits
depends on at mostinput bits, and thaf : {0,1}* — {0,1}* is c-local if for
everyn the restriction off to n-bit inputs isc-local. For a constant, the non-
uniform classNC? includes allc-local functionsf : {0,1}* — {0,1}*. The class
NC contains all functions witsomeconstant locality, namely it is the union of
all classeNC?. The clasauniform-NC? is the class oNC? functions that can be
computed in polynomial time; i.euniformNC? = NC° N P.2

Expanders. In the followings think ofm as larger tham. We say that a bipar-
tite graphG = ((L = [m], R = [n]), E) is (K, «) expanding if every set of left

2We can equivalently define the clas$é€° anduniformNC? in terms of circuits. In this case
the clasNC is the class of functions which are computable by constant depth circuits with bounded
fan-in, and the classniformNCP requires these circuits to be polynomial-time constructible. These
definitions are trivially equivalent in the non-uniform case. This equivalence also holds in the uniform
case since, given an oracle ta-docal function f, one can efficiently “learn” alNC® circuit that
computesf. (Each of the output bits of is a boolean function that depends only ®@mput bits,
hence it can be learned in tini&(n) via a brute force search over all possible subsetsrefevant
variables.)



verticesS of size smaller thark has at least - |.S| right neighbors. A family of
bipartite graphg G, } n,eny WhereG,, = ((L = [m(n)], R = [n]), E) is expanding
if for some constants and and sufficiently large: the graph,, is (8- m(n), «)
expanding. A family ofm(n) x n binary matrice§ M,, },en is expanding if the
family of bipartite graphdG,, }.en represented byM,, },.cn (i.e., M, is the ad-
jacency matrix of7,,) is expanding.

2.2 Some useful facts

We will rely on several standard facts. We begin with two facts regarding statistical
distance whose proofs can be found in [29].

Fact 2.2 For every distributionsX andY and every randomized process we
haveSD(A(X), A(Y)) < SD(X,Y).

For jointly distributed random variablesand B we write B| 54—, to denote the
conditional distribution ofB given thatA = a.

Fact 2.3 Suppose thak = (X3, X2) andY = (Y7, Y>) are probability distribu-

tions on a seD x E such that: (1)X; andY; are identically distributed; and (2)
with probability greater thari —c overz < X, we havesD(Xs| x, =z, Y|y =2) <

J. ThenSD(X,Y) < e +9.

For a randomized algorithmrd and an integei we defineA’ to be the ran-
domized algorithm obtained by composidgexactly: times with itself; that is,
Al(z) = A(x) and Ai(x) = A(A"'(z)), where in each invocation a fresh ran-
domness is used. The following fact (which is implicit in [1]) can be proved via a
hybrid argument.

Fact 2.4 Let{ X, } be a distribution ensemble, and léte a randomized polynomial-
time algorithm. Suppose th&tX,, } ~ {A(X,,)}. Then for every polynomial(-)
we have{ X,,} ~ {AP()(X,,)}.

We letH,(-) denote the binary entropy function, i.e., fox p < 1, Ha(p) &
—plog(p) — (1 — p)log(1 — p). We will use the following well known bound on
the sum of binomial coefficients.

Fact 2.5 For 0 < p < 1/2 we have> 7", (%) < 2nt(®),

Thebiasof a Bernoulli random variabl& is defined to be Pr[X = 1] — 3|.
We will need the following fact which estimates the bias of sum of independent
random coins (cf. [23, 30]).



Fact 2.6 Let X1,..., X; be independent binary random variables. Suppose that
for somed < ¢ < 1 and everyi it holds thatbias(X;) < §. Thenbias(@'_, X;) <

1 t

5(20)".

3 LPRG in NC" implies Hardness of Approximation

In the following we show that if there exists an LPRGNC® then there is no
polynomial-time approximation scheme (PTAS) for Max3SAT; that is, Max3SAT
cannot be efficiently approximated within some multiplicative constantl. Re-
call that in the Max3SAT problem we are given a 3CNF boolean formula with
s clauses ovemn variables, and the goal is to find an assignment that satisfies
the largest possible number of clauses. The M&SP problem is a general-
ization of Max3SAT in which instead of clauses we get boolean constraints
C ={Cy,...,Cs} of arity £. Again, our goal is to find an assignment that satis-
fies the largest possible number of constraints. (Recall that a congitainarity
¢ overn variables is arf-local boolean functiory : {0,1}" — {0,1}, and it is
satisfied by an assignmefaty, ..., o,) if f(o1,...,00) = 1.)

A simple and useful corollary of the PCP Theorem [5, 6] is the inapproxima-
bility of Max3SAT.

Theorem 3.1 Assume thaP # NP. Then, there is aa > 0 such that there is no
(1 + ¢)-approximatation algorithm for Max3SAT.

We will prove a similar result under the (stronger) assumption that there exists
an LPRG inNCY. Our proof, however, does not rely on the PCP Theorem.

Theorem 3.2 Assume that there exists an LPR@AL. Then, there is aa > 0
such that there is n@l + ¢)-approximation algorithm for Max3SAT.

The proof of Theorem 3.2 follows by combining the following Fact 3.3 and
Lemma 3.4. The first fact shows that in order to prove that Max3SAT is hard to
approximate, it suffices to prove that M@CSP is hard to approximate. This
standard result follows by applying Cook’s reduction to transform every constraint
into a 3CNF.

Fact 3.3 Assume that, for some constafts N ande > 0, there is no polynomial
time (1 + ¢)-approximation algorithm for Max-CSP. Then there is arf > 0 such
that there is no polynomial tim@ + ¢’)-approximation algorithm for Max3SAT.

Thus, the heart of the proof of Theorem 3.2 is showing that the existence of an
LPRG inNC{ implies that there is no PTAS for Ma%CSP.
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Lemma 3.4 Let ¢ be a positive integer, and > 1 be a constant such that :
{0,1}* — {0,1}*" is an LPRG which is computable NC). Then, there is no
1/(1 — e)-approximation algorithm for MaxX-CSP, where) < ¢ < 1/2is a
constant that satisfiedds(e) <1 —1/c.

Fore = 1/10 (i.e.,~ 1.1-approximation) the constant= 2 will do, whereas
for e = 0.49 (i.e.,~ 2-approximation}: = 3500 will do.
Proof: Lets = s(n) = cn. Assume towards a contradiction that there exists
an1/(1 — e)-approximation algorithm for Max-CSP wherdd,(e) < 1 — 1/c.
Then, there exists a polynomial-time algoritMnthat given ar/-CSP instance
outputs 1 if¢ is satisfiable, and 0 i is e-unsatisfiable (i.e., if every assignment
fails to satisfy at least a fractianof the constraints). We show that, given suth
we can “break” the LPRG; that is, we can construct an efficient (non-uniform)
adversary that distinguishes betwea&(l/,,) andUs. Our adversary3,, will (de-
terministically) translate a string € {0,1}° into an/-CSP instance), with s
constraints such that the following holds:

1. If y — G(U,) theng, is always satisfiable.

2. If y « U, then, with probabilityl — neg(n) over the choice of, no assign-
ment satisfies more thd — ¢)s constraints of,,.

Then, B,, will run A on ¢, and will outputA(¢,). The distinguishing advantage
of Bis 1 — neg(n) in contradiction to the pseudorandomness;of

Itis left to show how to translatg € {0, 1}° into an/-CSP instance,. We use
n boolean variablesy, . .., z, that represent the bits of an hypothetical pre-image
of y underG. For everyl < i < swe add a constrain®;(z) = y; whereG; is the
function that computes theth output bit ofG. SinceG;, is an/-local function the
arity of the constraint is at most

Suppose first thay — G(U,,). Then, there exists a string € {0,1}" such
thatG(o) = y and hence, is satisfiable. We move on to the case where Us.
Here, we rely on the fact that such a randgns very likely to be far from every
element in the range af. More formally, define a seBAD,, C {0,1}* such
thaty € BAD, if ¢, is (1 — ¢)-satisfiable; that is, if there exists an assignment
o € {0,1}" that satisfies at least — ¢) fraction of the constraints af,. In other
words, the Hamming distance betwegand G (o) is at mostzs. Hence, all the
elements oBAD,, arecs-close (in Hamming distance) to some strindin(G).
Therefore, the size @ AD,, is bounded by

ESs

‘Im(G)‘ . E <8> < 2n2H2(5)s — 2(l+CH2(5))n7
1
=0



where the first inequality is due to Fact 2.5. be¥ ¢ — (1 4 ¢ Hy(e)) whichis a
positive constant sinclz(¢) < 1 — 1/c. Hence, we have

Pr [¢y is (1—z) satisfiablg = [BAD,|-27* < gUleHa(e)n—cn —_ 9=an _ peg(p),
Y<—Us

which completes the proof. |

Remark 3.5 Lemma 3.4 can tolerate some relaxations to the notion of LPRG. In
particular, since the advantage Bf, is exponentially close to 1, we can consider

an LPRG that satisfies a weaker notion of pseudorandomness in which the dis-
tinguisher’'s advantage is bounded by- 1/p(n) for some polynomiap(n). In
Section 4 we consider additional cryptographic primitives that imply the inapprox-
imability of Max3SAT.

Lemma 3.4 implies the following corollary.

Corollary 3.6 Suppose there exists a PRGN with an arbitranylinear stretch;
i.e., for everyc > 0 there exists a PR& : {0,1}" — {0,1}¢™ € NCY. Then,
Max ¢-CSP cannot be approximated to within any constast 2 that is arbitrarily
close to 2.

Remark 3.7 Corollary 3.6 is tight, as any CSP problem of the fofiw) = y

(for anyy € {0, 1}*) can be easily approximated within a factor of 2. To see this,
note that the functioi7; (=) which computes thé-th output bit ofG must be bal-
anced, i.e.Pr,[G;(z) = 1] = 1/2. (Otherwise, sincé&; € NC?, the functionG;

has a constant bias and §9U,,) cannot be pseudorandom.) Therefore, a random
assignment is expected to satisfy 1/2 of the constraints of the instapnde= y.

This algorithm can be derandomized by using the method of conditional expecta-
tions.

Papadimitriou and Yannakakis [27] defined a clelsscSNP, in which Max3SAT
is complete in the sense that any problenMaxSNP has a PTAS if and only if
Max3SAT has a PTAS. Hence, we get the following corollary (again, without the
PCP machinery):

Corollary 3.8 Assume that there exists an LPRGN@". Then, all Max SNP
problems (e.g., Max-Cut, Max2SAT, Vertex Cover) do not have a PTAS.



4 UsingNC" Implementations of Other Cryptographic Prim-
itives

In the following we extend the results of the Section 3, and show that the inapprox-
imability of Max3SAT can be based dNC" implementations of the following
primitives: (1) pseudoentropy generator that gains a linear amount of computa-
tional entropy; (2) string commitment of linear size; and (3) public-key encryption
whose ciphertext length is linear in the message length. We start by abstracting the
proof of Theorem 3.2. That is, we show that the following assumption imply the
inapproximability of Max3SAT.

Consider a pair of distribution ensembldsand B, a parametef, and a con-
stante. The assumption holds if (1) is samplable byNC? circuits; (2) the com-
putational distance betweehand B is bounded by); and (3) the probability that
the outcome ofB will be e-close to the support ofl is smaller tharl — §. More
formally, we assume the following.

Assumption 4.1 There exist two distribution ensemblgg,, },,cn and { By, }nen
whereA,, and B,, are distributed ovef0, 1}*("), and the ensemblgA,,} is sam-
plable by anNC® circuit family. There exists a functiaf(n) : N — [0,1], and a
constant > 0 such that the following holds:

1. {A,} éé(n) {B,}. That is, every polynomial-size circuit family distin-
guishes{ 4,,} from { B,,} with advantage at mosit(n) for sufficiently large
n.

2. With probability smaller than — é(n) a stringb < B,, is e-close (in nor-
malized Hamming distance) to some string in the suppor,of That is,
Pry_p, [da € support(A,) s.t.dist(a,b) < €-s(n)] < 1 — §(n), where
dist(a, b) denotes the Hamming distance between the striraysd b.

This assumption is implied by the existence of an LPR® . Indeed, ifG :
{0,1}™ — {0, 1}°" is an LPRG inNC" then Assumption 4.1 holds with respect to
A, = G(U,), By, = Uep, 6(n) = 1/n and a constart < e < 1/2 that satisfies
1+ ¢-Ha(e) < e. (This is implicitly shown in the proof of Lemma 3.4.)

Lemma 4.2 Assumption 4.1 implies that there is no PTAS for Max3SAT.

Proof sketch: The proof is very similar to the proof of Lemma 3.4. Let
G € NC) be the circuit that samples the distributidp. Assume towards a con-
tradiction that the claim does not hold. Then, there exists an algoriththat
given and-CSP instance outputs 1 if¢ is satisfiable, and 0 i is e-unsatisfiable.
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We use this procedure to distingui§H,, } from { B,, } with advantage greater than
§(n). Given a challengg < {0,1}*("™), we translate it into a#-CSP instance,

of the formG(z) = y, and outputD(¢,). If y — A, theng, is always satisfiable.
On the other hand, if < B,, then, with probability larger thasi(n), the formula
¢y Is e-unsatisfiable. u

4.1 Pseudoentropy Generator

We now show that atlNC® implementation of a relaxed notion of LPRG implies
Assumption 4.1. In particular, instead of being pseudorandom, the distribution
G(U,) is only required to be computationally close to some distribution whose
min-entropy is (much) larger. Moreover, we allow a non-negligible distinguishing
advantage. This relaxation can be considered as a weak pseudoentropy generator
that gains a linear amount of computational entropy cf.[21, 7].

Lemma 4.3 (Weak LPRG in NC° = inapproximability) Suppose that there ex-
ist anNC functionG : {0,1}" — {0,1}*(™ and a distribution ensemblgB,, },
such that:

o {G(Un)} ~s(m) {By} for somei(n) such thaw(n) < 1 —27°6(),
e Hoo(By) —n=Q(s(n)).
Then, there is no PTAS for Max3SAT.

Proof: LetA, & G(Uy). We show that4,,, B,,, 6(n) and some constaat <
1/2 satisfy Assumption 4.1. Indeed, the only non-trivial part is item (2). Let

BAD.,, C {0,1}*" be the set of all strings which areclose tolm(G). Then,

Hgn[b ise-close tolm(G)] = ) f}gn[b =9
yeBAD
< (Im( >) 92— Hoo (Bn)
< 2n+s(n) HQ(E —Heo (Bn) S 92— < 1— ( )7

where the second inequality is due to Fact 2.5, the third inequality holds for suf-
ficiently small (constant}, and the last inequality holds for sufficiently large
[ |
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4.2 String Commitment

Another sufficient assumption is &FC° implementation of a non-interactive string
commitment with a constant information rate, namely one in which the length of
the commitment is linear in that of the committed string. A non-interactive com-
mitment scheme is defined by a functiGom : {0,1}™ x {0, 1} — {0, 1}

such that:

1. (Binding) For every pair of different strings,y € {0, 1}" the supports of
CoM(, Upy(ny) @andCoM(y, Uy, ) are disjoint.

2. (Hiding) For every pair of string familie§z,, },,cny and{y, } nen Wherez,,, y,, €
{0,1}", we haveCoM (2, Upn(n)) = COM(Yn, Upn(n))-

In fact, for our purpose we can relax the hiding property t€oe1(z;,, U, () &5(71)
COM(Yn, Upn(ny) Whered(n) = 1 — 270,

Lemma 4.4 (Constant rate string commitment in NC° = inapproximability)

Letc > 1 be a constant. Suppose that there exists a (non-interactive) commitment
schemeCom : {0,1}" x {0,1}™™ — {0,1}°™ computable itNC°. Then, there

is no PTAS for Max3SAT.

Proof:  Lete be a sufficiently small constant for whi¢h(¢)-c¢ < 0.9. Let A, def

COM(Un, Upn(ny) @and B, = CoM(0", Uy, (). We show thatd,, B,, d(n) =
1 — 272" ande satisfy Assumption 4.1. Again, we focus on proving that the
second item of the assumption holds.

Fix somer € {0,1}™(™). There are at mosE ;% () < 2Mz(e)en < 20.9n
strings which are-close toCom(0™, ). Hence, by the binding property, we have

Pr[Com(0",r) is e-close tosupport(COM(Uy, Uyyy(n)))] < 279777 = 27017,
Thus,
Pr  [Com(0",7) is e-close tosupport(COM(Uy,, Upy(ny))] < 2701 < 1-§(n),

r—Upm(n)

where the last inequality holds for sufficiently large |

Public-Key Encryption. Suppose we have an error-free public-key encryption
scheme whose encryption algorithm isNC" and whose information rate is con-
stant (i.e., the ciphertext length is linear in the message length). Then, we can
construct a (collection of) constant-ra¥&C" non-interactive commitments. (Set
CoMc(z,r) e E.(z,r) whereE,(z,r) is the encryption function which encrypts

the message using the keye and randomness.) Hence, such a scheme also
implies the inapproximability of Max3SAT.
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5 A Construction of LPRG in NCY

5.1 Overview

We start with an informal description of our construction. Consider the following
distribution: fix a sparse matri¥/ < {0,1}"*™ in which every row contains a
constant number of ones, multiply it with a randentit vectorz, and add a noise
vectore € {0,1}"™ which is uniformly distributed over alt:-bits vectors whose
Hamming weight i x. - m|. (For concreteness, think @f = 5n andy = 0.1.)
That is, we consider the distributidﬁ#(M) M - 2 + e, where all arithmetic is
overFs,.

Consider the distributiomf)wm_l (M) which is similar to the previous distri-
bution except that this time the noise vector is uniformly distributed avéit
vectors whose weight i§u + 1/m) - m = pm + 1. Alekhnovich conjectured
in [1, Conjecture 1] that for a proper choice bf these distributions are compu-
tationally indistinguishable. He also showed that if indeed this is the case, then
f)H(M) is pseudorandom; that is@#(M) is computationally indistinguishable
from U,,. Since the distributiorf)u(M) can be sampled (efficiently) by using
roughlyn +log (/f_”m) < n+mHs(u) random bits, it gives rise to a pseudorandom
generator with linear stretch (when the parameters are chosen properly).

We would like to sampleﬁ#(M) by anNC? function. Indeed, since the rows
of M contains only a constant number of ones, we can easily compute the product
Mz in NC? (recall that) itself is fixed). Unfortunately, we do not know how to
sample the noise vecterby anNC® function. To solve this, we change the noise
distribution. That is, we consider a slightly different distributibp (/) in which
each entry of the noise vecteis chosen to be 1 with probabilify (independently
of other entries). We adopt Alekhnovich’s conjecture to this setting; namely, we as-
sume thatD, (M) cannot be distinguished efficiently from, -1 (M). (In fact,
the new assumption is implied by the original one. See Appendix A.) Similarly to
the previous case, we show that under this assump@jg(d/ ) is pseudorandom.

Now, whenever: = 2~ for some integet, we can sample each bit of the
noise vector by taking the product ofandom bits. Hence, in this cage, (M)
is samplable ifNC? (as we think ofy as a constant). The problem is that our
NC° procedure which samplds,, (M) consumes more bits than it produces (i.e.,
it consumes: + ¢ - m bits and produces: bits). Hence, we lose the stretch. To
solve this, we note that most of the entropy of the seed was not used. Thus, we
can gain more output bits by applying a randomness extractor to the seed. To be
useful, this randomness extractor should be computab{f@fh We construct such
an extractor by relying on the constructionsebiased generator iINC? of [23].

For ease of presentation, we describe our construction in a non-uniform way.
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We will later discuss a uniform variant of the construction.

5.2 The Assumption

Letm = m(n) be an output length parameter whetén) > n, let/ = ¢(n) be a
locality parameter (typically a constant), andldet p < 1/2 be a noise parameter.
Let M, .0 be the set of alin x n matrices ovelf, in which each row contains at
most/ ones. For a matrid/ € M,, ,, , denote byD,, (M) the distribution of the
randomm-bit vector

Mx + e,

wherez «— U, ande € {0,1}"™ is a random error vector in which each entry is
chosen to be 1 with probability (independently of other entries), and arithmetic
is overF,. The following assumption is a close variant of a conjecture suggested
by Alekhnovich in [1, Conjecture 1}

Assumption 5.1 For anym(n) = O(n), and any constant < p < 1/2, there
exists a positive integef, and an infinite family of matrice$M,, },en, M, €
M (n),n,e» SUCh that

Du(Mn) ~ D,u—i—m(n)*l (M'ﬂ)
(Note that since we consider non-uniform distinguishers, we can assum&/that
is public and is available to the distinguisher.)

Remark 5.2 Note thatin Assumption 5.1 we do not requ{i&/,, } to be polynomial-
time computable. We will later present a uniform construction based on the follow-
ing version of Assumption 5.1. For amy(n) = O(n), any constand < p < 1/2,

and any infinite family ofin(n) x n binary matrice§ M,, },.en, if {M,, } is expand-

ing thenD,,(M,,) ~ D,y m(ny-1(My). This assumption seems likely as argued by
Alekhnovich [1, Remark 1].

The following lemma shows that if the distributidn, (1/,,) satisfies the above
assumption then it is pseudorandom. (The proof is very similar to the proof of [1,
Theorem 3.1], and it is given here for completeness.)

30ur assumption is essentially the same as Alekhnovich’s. The main difference between the two
assumptions is that the noise vectdn [1] is a random vector of weight exact[ysm], as opposed
to our noise vector whose entries are chosen to be 1 independently with prohabifithppendix A
we show that our assumption is implied by Alekhnovich’s assumption. Intuitively, the implication
follows from the fact that our noise vectors can be viewed as a convex combination of noise vectors
of fixed weight. We do not know whether the converse implication holds. Indeed, a distritition
which can be described as a convex combination of distributions. . , D,, may be pseudorandom
even if each of the distribution®; is not pseudorandom.
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Lemma 5.3 For any polynomiain(n) and constan® < p < 1/2, and any infinite
family, { M, }nen, of m(n) x n matrices ovea, it D,y (My,) & D, -1 (M),
thenD,,(My) & Upy(n)-

Proof:  Letm = m(n). Letr, denote the distribution of am-bit vector in
which each entry is chosen to be 1 with probabilifyn (independently of other
entries) where is the constant /(1 — 2u). As shown next, we can write

D1 (My) = Dy (My,) + 7. 1)

To see this, let, ¢’ € {0,1}™ be noise vectors of rate, u + 1/m respectively.
Then, to prove Eq. 1 it suffices to show thét= e + r,. Indeed, the entries of
e + r, are iid Bernoulli random variables whose success probability is

po (L= (m(1=2p) ") + (L= p) - (m(L = 2u)) " = p+m(n)~".
Now, by Eqg. 1 and the lemma’s hypothesis, we have
Du(Mn) ~ Du(Mn) + T (2

Letr!, be the distribution resulting from summing (oW&F) i independent samples
fromr,. Letp(-) be a polynomial. Then, by Fact 2.4, we get that

Dyu(My) = Dy(M,) + 5. (3)
Recall thatr,, is a vector of iid Bernoulli random variables whose success prob-
ability is ©(1/m). Hence, for some polynomial(-) (e.g.,p(n) = nm) it holds
that
(To see this, note thaﬁ(”) is a vector of iid Bernoulli random variables whose
success probability is, by Fact 26,2 + (1/2 — ©(1/m))?™ = 1/2 + neg(n).)
By combining Eq. 3 and 4, we have

and the lemma follows. |
By combining Assumption 5.1 and Lemma 5.3, we get the following.

Proposition 5.4 Suppose that Assumption 5.1 holds. Then, foraty) = O(n),
and any constartt < p < 1/2, there exists a constafitc N, and an infinite family
of matrices{ M, }nen WhereM,, € M., ¢ SUch thatD,,(M,,) ~ Unn(n)-

Remark 5.5 If the restriction on the density of the matricés, is dropped, the

above proposition can be based on the conjectured (average case) hardness of de-
coding a random linear code (cf., [9, 19]). In fact, under the latter assumption we
have thatD,,(M;) & U, (») for mostchoices ofM,,’s.
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5.3 The Construction

From here on, we lgi = 2! for somet € N. Then, we can sample each bit of the
error vectore by taking the product of independent random bits. This naturally
gives rise to alNC® function whose output distribution is pseudorandom, namely,

fn(@,y) = Mpax + E(y)

where

m(n)

t
T € {Oa 1}n, yE {07 l}t-m(n)7 E(y) = (H yt-(il)Jrj) : (5)
j=1

i=1

Since f1.(Un, Upmm(ny) = Du(My), the distributionf,, (Uy, Uppm)) is pseudo-
random under Assumption 5.1 (when the parameters are chosen appropriately).
Moreover, the locality off,, is ¢ + ¢t = O(1). However,f, is not a pseudorandom
generator as it uses + ¢ - m(n) input bits while it outputs onlyn(n) bits. To
overcome this obstacle, we note that most of the entropyvedis not “used”. In-
deed, we use the- m(n) random bits ofy to sample the distributiof’(y) whose
entropy is onlym(n) - Ho(27%) < (t +2) - 27¢ - m(n). Hence, we can apply an
extractorto regain the lost entropy. Of course, in order to get a PRSGHN the
extractor should also be computedM€°. Moreover, to get a linear stretch we
should extract almost all of the- m(n) random bits fromy while investing less
thanm additional random bits. In the following, we show that such extractors can
be implemented by usingbiased generators

First, we show that the distribution gfgiven E(y) contains (with high proba-
bility) a lot of entropy. In the following we letn = m(n).

Lemma 5.6 Lety « U, and E(y) be defined as in Eg. 5. Denote by E(y)]
the distribution ofy given the outcome aF(y). Then, except with probability
e~(27'm)/3 over the choice of, it holds that

Hoo([y|E(y)]) = (1 = 4(2)) - tm, (6)
whered (t) = 2790,

Proof:  We view E(y) as a sequence of. independent Bernoulli trials, each
with a probability2— of success. Recall thagtis composed ofr blocks of length
t, and that the-th bit of E(y) equals the product of the bits in tli¢h block of
y. Hence, wheneveE(y); = 1 all the bits of thei-th block of y equal to 1, and
whenE(y); = 0 thei-th block ofy is uniformly distributed ovef{0, 1}* \ {1'}.
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Consider the case in which at mast 27tm components of2(y) are ones. By

a Chernoff bound, the probability of this event is at lest e=(2~"™)/3_ |n this

casey is uniformly distributed over a set of size at legit—1)(=2""")™_Hence,

conditioning on the event that at ma@st2~tm components of2(y) are ones, the

min-entropy ofly| E(y)] is at leastn(1 — 2=+1) log(2! — 1) > tm(1 — 6(t)), for

5(t) = 2790, |
e-biased generators can be used to extract random bits from distributions that

contain sufficient randomness. Extractors based-biased generators were pre-

viously used in [13].

Lemma 5.7 ([13, Lemma 4]) Letg : {0,1}" — {0, 1}* be ans-biased generator,
and letX; be a random variable taking values {0, 1}* whose min-entropy is at
least(1 — ¢) - s, for somey > 0. Then,

SD((g(Un) + X5),Us) < € 98-8/2-1/2
where vector addition is taken ovEs.

The above lemma follows directly by analyzing the affect of a random step
over a Cayley graph whose generator set ig-dnased set (cf. [20, Lemma 2.3]
and [24, 3)).

Recently, Mossel et al. [23] constructed &xbiased generator iNC? with an
arbitrary linear stretch and exponentially small bias.

Lemma 5.8 ([23, Thm. 14]) For every constant, there exists a (non-explicity
biased generatoy : {0,1}" — {0,1}*" in NC? whose bias is at mog»/<"
(whereb > 0 is some universal constant that does not depend on

In Section 5.4 we provide an explicit version of the above lemma in which
the bias is only2—"/Pol¥loeg(c) " The price we pay is in the locality which grows
polylogarithmically with the stretch constant(See Theorem 5.12.)

We can now describe our LPRG.

Construction 5.9 Lett and/ be positive integers, and k > 1 be real numbers
that will effect the stretch factor. Let = kn and let{M, € M, ¢} be an
infinite family of matrices. Let : {0, 1}*™/¢ — {0, 1} be the=-biased generator
promised by Lemma 5.8. We define the function

Gn(x,y,r) = (Mn(L‘ + E(y),g(’f’) + y)7

m

wherex € {Oa l}nvy € {07 1}t-m7 re {07 1}tm/C7E(y) = (H;‘:l yt-(i—l)+j)
Thus,G,, : {0, 1}"Hm+2 {0, 1}m+tm,

i=1
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Observe thaf,, is anNC" function. We show that if the parameters are chosen
properly thenGs,, is an LPRG.

Lemma 5.10 Under Assumption 5.1, there exist constahté € N, constants
¢,k > 1, and a family of matrice§M,, € M, ,, (¢} such that the functiowr,,
defined in Construction 5.9 is an LPRG.

Proof: Letk > 1 be some arbitrary constant and= m(n) = kn. Letc andt¢
be constants such that:
c=2t/(1-1/k)

and

cd

AE (b — 6(t)> > 0, 7)
where §(-) is the negligible function from Eq. 6 antdis the bias constant of
Lemma 5.8. Such constantsandt do exist sincej(t) = 2~ while b/c® =
O(1/t%). Letl € N be a constant anfM,, € M., ,,,} be an infinite family of
matrices satisfying Assumption 5.1.

First, we show thafs,, has linear stretch. The input length@f, isn + tm +
tm/c = (tk + k/2 + 1/2) - n. The output length i$t + 1) - m = (tk + k) - n.
Hence, sincé& > 1, the functionG,, has a linear stretch.

Letz,y andr be uniformly distributed ovef0, 11", {0, 1}*™ and{0, 1}™/¢
respectively. We prove that the distributiéfn,, (z,y,r) is pseudorandom. By
Fact 2.3 and Lemmas 5.6, 5.7 and 5.8 it holds that

SD((E(y),y + 9(r)), (E(), Urm)) e~ @Tm)/8 4 gblim/e)/et  gtmi(8)/2-1/2

e~ (27'm)/3 + 2(7b/c5+6(t))-tm

VAN VAN VAN

e—(27'm)/3 | g—Am _ neg(m) = neg(n),

where the last inequality is due to Eq. 7. Therefore, by Fact 2.2 and Proposition 5.4,
we get that

(Mpz+E(y), 9(r)+y) ~ (Myx+E(y), Upm) = (Dot (M), Upm) ~ (U, Ut.m),

and the lemma follows. [ |

By the above lemma we get a construction of LPRAVI@" from Assump-
tion 5.1. In fact, in [4, Thm. 6.5] it is (implicitly) shown that such an LPRG can be
transformed into an LPRG whose locality is 4. More precisely, [4] prove that for
some (small) constamt any PRGG : {0,1}" — {0,1}"*+5(® such that each of
its output bits is computable by &C! circuit of sizel(n) can be transformed into
a PRGG : {0, 1}ts(m)ln)® _, 0, 1}ntsm)ln)+s(n) jn NCY. Typically in [4],
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I(n) is superconstant and so the stret¢h) of the resulting generator is ongub-
linear in its input lengthn + s(n) - 1(n)¢. However, wherGG € NC° each output bit
is computable by a constant size circuit and@9 = O(1). Therefore, ifG is an
LPRGInNCY, i.e.,s(n) = ©(n) andi(n) = O(1), then the stretch of the resulting
PRG whichiss(n) = ©(n) is still linear in its input length+ O (n)+O(n)-O(1).
Hence, we have:

Theorem 5.11 Under Assumption 5.1, there exists an LPRGVIH].

Mossel et al. [23] showed that a PRGNIC cannot achieve a superlinear stretch.
Hence, Theorem 5.11 is essentially optimal with respect to stretch.

Remarks on Theorem 5.11.

1. (Uniformity) Our construction uses two non-uniform advices: (1) a family
of goode-biased generators INC® as in Lemma 5.8; and (2) a family of
matrices{ M, } satisfying Assumption 5.1. In Section 5.4 we eliminate the
use of the first advice by proving a uniform version of Lemma 5.8. We can
also eliminate the second advice and construct an LPR@iform NC}
by using an explicit variant of Assumption 5.1. In particular, we follow
Alekhnovich (cf. [1, Remark 1]) and conjecture that any family of matrices
{M,} that represent graphs with good expansion satisfies Assumption 5.1.
Hence, our construction can be implemented by using an explicit family of
asymmetric constant-degree bipartite expanders such as the one givenin[11,
Theorem 7.1].

2. (The stretch of the construction) Our techniques do not yield a PRGswith
perlinear stretch inNCY. To see this, consider a variant of Assumption 5.1
in which we allowm(n) to be superlinear. If we lgi(n) to be a constant,
then, by information-theoretic arguments, we n€éd:(n)) random bits to
sample the noise vector (i.e., the entropy of the noise vectQ(is(n))),
and so we get only linear stretch. On the other hand, if wg.&e} to be
subconstant, then the noise distribution cannot be samplath(as any
bit of an NC"-samplable distribution depends on a constant number of ran-
dom bits). This problem can be bypassed by extending Assumption 5.1 to
alternative noise models in which the noise is not independently and iden-
tically distributed. However, it is not clear how such a modification affects
the hardness assumption. (Also note that we do not know how to reduce the
locality of a superlinear PRG INC? while preserving its superlinear stretch.

In particular, applying the transformations of [4] to such a PRG, will result
in alinear PRG with locality 4.)
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5.4 -Biased Generators in UniformNC°

In [23, Theorem 14], Mossel et al. constructed sahiased generator inon-
uniform NC2 with an arbitrary linear stretchn and biase = 2-2(/<) 4 we
generalize their construction and provide a complementary result which gives a
better tradeoff between the bias and stretch and allows a uniform implementation.
However, the locality of our construction grows with the stretch constant.

Theorem 5.12 For every constant, there exist as-biased generatog : {0,1}" —
{0,1}°™ in uniform NC° whose bias iss = 2"/PWloe() and its locality is
¢ = polylog(c).

As in [23], our generator is obtained by XORing the outputs of two functions: a
generatop®) which is robust against linear functions that involve small number of
output bits (“small tests”) and a generagé? which is robust against linear func-
tions that involve large number of output bits (“large tests”). More precisely, for a
random variableX = (X3,...,X,) ranging over{0,1}", a setS C {1,...,n},
and an integed < k < n, we define

! 1
biasg(X) £ Pr[@Xizo]—i

)

€S
bias(X) £ biasg (X
iasg (X) Sg{l,.@,iﬁﬂ:k iasg(X),
bias(X) £ Org]?%(nbiask(X) :SQ{IT?£7S#®biaSS(X) .

Then, we prove Theorem 5.12 by using the following two lemmas (whose proofs
is postponed to Sections 5.4.1, 5.4.2):

Lemma 5.13 (Generator against small tests}or every constant, there exist a
functiong® : {0,1}" — {0,1}*"in uniformNCgolylog(C) such that for sufficiently
large n’s and evenp < k < Q(n/polylog(c)), we havebias,(¢®)(U,)) = 0.

Lemma 5.14 (Generator against large testsyor every constant, there exist a
functiong® : {0,1}" — {0, 1} in uniformNCP, ..., Such that for sufficiently
largen’s and everyk € {1,...,cn}, we havebiasy (¢ (U,,)) < 27#/5,

Given these two lemmas we can prove Theorem 5.12.

Proof:  (of Theorem 5.12) Let be a constant. Lej(®) : {0,1}" — {0,1}?>*"
andg® : {0,1}" — {0, 1} be the generators promised by Lemmas 5.13, 5.14

“In fact, cn can be slightly super-linear.
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(instantiate with the constagt). Then, the functiony(z,y) = ¢©) (z) ® ¢V (y)
satisfies Theorem 5.12. To see this, observe that forratgpendentandom vari-
ablesX andY and any non-uniform statistical t€5f the success probability Gt
on the random variabl& @ Y is not larger than its success probability &n(or
Y). [ |

5.4.1 Proofof Lemma5.13

Let M be anm x n matrix overFy such that every subset &frows of M are
linearly independent. Then, it is well known that the functipn {0,1}" —
{0,1}™ that mapse into M - x is ak-wise independent generator (cf. [2]). That

is, for every0 < j < k, we havebias;(f(U,)) = 0. If each row ofM contains at
most/ ones then the functiofiis in NC?. It turns out that there exists a (uniform)
family of such matrices whose parameters match the parameters of Lemma 5.13.
Specifically, we use the following result which is a corollary of [11, Theorem 7.1].

Lemma 5.15 ([11]) For every constantthere exists a family of matricgd/,, },, .
such that

e M, is ancn x n matrix overFs.
e Every row ofM,, has at mospolylog(c) ones.
e Every subset of = Q(n/polylog(c)) rows of M, are linearly independent.

e M, can be constructed in timeoly(n).

Hence, the generator for small tests can be defingéfas:) = M,, - .

5.4.2 Proof of Lemma 5.14

We will need the following standard claim that can be proved via the probabilistic
method (see [17, Lecture 8, Prop. 2.1]).

Claim 5.16 For sufficiently largen, there exists an-biased generatof : {0,1}" —
{0,1}2"* whose bias is = 27"/4.

We can now prove Lemma 5.14. Letbe the desired stretch constant. Let
¢ = 4loge. Letm = 22 andf : {0,1}¢ — {0,1}™ be ans-biased generator
whose bias is = 27%/4 as promised by Claim 5.16. (Sineds a constant, such
f can be found by using exhaustive search.) Our generator will partitionbis
inputz into b = |n/¢] blocksz™, ... 2® of length/ each. Then, the generator
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def

will apply f to each block separately, and concatenate the result. Naghely,) =
(f(zM), ..., f(z®)). The locality of g is ¢ and its output length i#m =

[ﬁzgcJ which is larger thamn for sufficiently largec.

We now analyze the bias @f”). To simplify notation, we index the outputs
of g by pairs(j,4) and Ietgj(.fg(x) = fi(z\)) (wherel < j < b, 1 <i<m
and f;(x) denotes the-th output bit of f(x)). LetS C {1,...b} x {1,...m} be
a linear test of cardinality:. Let S; be the restriction of5 to the indices of the
j-th block, i.e.,S; = {i: (j,i) € S}. Then,Si,..., S, is a partition ofS. Let
T={i:S; #0} C{1,...,b}. Hence, forz — U,, we have

biasg(¢(z)) = bias (@ @ fi(:c(j))) .

JET iESj

Sincef is ans-biased generator, for eaghe T we have thabias(@;c, fi(z17)) <

e. Sinceg(z) is partitioned into blocks of length) the testS contains output bits
coming from at least /¢ different blocks and s¢I'| > k/¢. Thus we can use
Fact 2.6 to upper bounsiasg (¢ (z)) by

l(gg)k/é <

(2 t/AHTYR/E < E(Q—Z/s)k/e < 9-k/5
2 -2 - ’

| =

as required. |

6 The Necessity of Expansion

As pointed out in Section 5, our construction of LPRG makes use of expander
graphs. This is also the case in several constructions of “hard functions” with low
locality (e.g., [15, 23, 1]). We argue that this is not coincidental, at least in the
case of PRGs. Namely, we show that the input-output graph of any LPRG'n
enjoys some expansion property. (In fact, this holds even in the casbiated
generators.) Then, we use known lower bounds for expander graphs to rule out
the possibility of exponentially strong PRG with superlinear stretdfiG. These
results are discussed from a wider perspective in Section 6.2. We start with the
technical results.

6.1 Actual Results

For a functionG : {0,1}" — {0,1}*, we define the input-output graptic =
((Out = [s],In = [n]), E) to be the bipartite graph whose edges correspond to
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the input-output dependenciesdh that is, (i, 7) is an edge if and only if thé-th
output bit of G depends on thg-th input bit. WhenG is a function family,Hq
denotes a graph family.

Proposition 6.1 LetG : {0,1}™ — {0,1}*™ be a PRG. Then, the graph (fam-
ily) Hz = ((Out = [s(n)],In = [n]), E) enjoys the following output expansion
property: for every constantand sufficiently large:, every set of output vertices
T C Out whose size is at mostog n touches at leastl’| input vertices.

Proof:  Assume towards a contradiction that there exists a smdll eétoutput
vertices that touches less thah| input vertices. LetGr(-) be the restriction of
G to the output bits of". Then, the functiorG(-) cannot be onto as it depends
on less tharT'| input bits. Therefore, there exists a stringe {0,1}!” such
that Pr(Gr(U,) = z] = 0. Hence, a (non-uniform) distinguisher which given
y € {0,1}* checks whetheyr = =z, distinguishes betwee@(U,) and Uy,
with advantag@—c!°e™ = 1/n¢, in contradiction to the pseudorandomnesgof

|

More generally, ifG is e-hard (i.e., cannot be broken by any efficient adversary

with advantage), then every set of < log(1/¢) output vertices touches at least
input vertices. This claim also extends to the casebiased generators.

Proposition 6.2 LetG : {0,1}" — {0, 1}* be anc-biased generator. Then, every
set oft < log(1/¢) output vertices i touches at leastinput vertices.

Proof:  Assume towards a contradiction that there exists @ sfutput vertices
of sizet < log(1/¢) that touches less thannput vertices. Theiz(U,,) # Us.
Therefore, there exists a linear functién: F;, — F5 that distinguishes between
Gr(U,) andU;. Namely,|Pr[L(G7r(Uy)) = 1] — Pr[L(U;) = 1]| # 0. Since
the distributionGr(U,,) is sampled by less thanrandom bits, the distinguishing
advantage of. is larger thar2=! > ¢, and saoG is note-biased in contradiction to
the hypothesis. ]

The above propositions show that wh@ris ane-hard PRG (or even-biased
generator), the bipartite gragl; = ((Out = [s(n)],In = [n]), F) enjoys some
output expansion property. Radhakrishnan and Ta-Shma [28] obtained some lower
bounds for such graphs.

Proposition 6.3 ([28], Theorem 1.5)Let H = ((V; = [s],Vo = [n]),E) be a
bipartite graph in which every sef C 14 of cardinality & touches at leastn

vertices froml,. Then, the average degreeldfis at least() (ﬁgg(%]g))

By combining this lower bound with the previous propositions we derive the
following limitation on the strength of PRGs with superlinear stretcN @y .
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Corollary 6.4 LetG : {0,1}" — {0,1}* be a2 t-hard PRG (or2~‘-biased

generator). Then, the locality @f is at least} (11;)?((2;?)) In particular, there is

no 2—(")-hard PRG, or even a—%(")-biased generator, with superlinear stretch
in NC?,

6.2 Discussion

To put the above results in context, some background on unbalanced bipartite ex-
panders is needed. Consider a bipartite grApk ((Out = [s],In = [n]), E) in
which each of the output vertices is connected to at mhogiuts. Recall thalf is a
(K, a)-expander if every set of output vertic6of size smaller thak” has at least
a - |S| input neighbors. We say that the expander is unbalanced-ifn. Unbal-
anced expanders have had numerous applications in computer science (see details
and references in [11]). Today, there are only two such constructions [31, 11]. Ta-
Shma et al. [31] considered the highly unbalanced case in whicho(s). They
constructed & K, «)-expander with degreé = polylog(s), expansion threshold
K < s® and almost optimal expansion facter= (1 — ¢)d, wherej > 0 is an ar-
bitrary constant. Capalbo et al. [11] present a construction for the setting in which
n is an (arbitrary) constant fraction ef(i.e., s = n + ©(n)). They construct a
(K, a)-expander with (nearly) optimal parameters; Namely, the degrekthe
graph is constant, and its expansion parameter&ate ()(s) anda = (1 — §)d,
whered > 0 is an arbitrary constant.

In Section 6.1 we showed that@ : {0,1}" — {0,1}° is a PRG then its
input-output grapt = ((Out = [s],In = [n]), E) is an(w(log n), 1)-expander.
This property is trivial to satisfy when the output degreéief is unbounded (as in
standard constructions of PRGs in which every output bit depends on all the input
bits). It is also easy to construct such a graph with constant output degree when
s(n) is not much larger than (as in theNC® constructions of [4]).

To see this, consider the following bipartite graph. Firstdet ((O,1), D)
be a bipartite graph ovdRn + 1] whose output vertices are the odd integers,
its input vertices are the even integers, and its edges correspond to pairs of con-
secutive integers, i.e) = {1,3,....2n+ 1}, I = {2,4,...,2n}, andD =
{(1,2),(2,3),...,(2n,2n+ 1)}. Thatis,C is a chain of lengti2n + 1. Let
m > n. Takem disjoint copies of', and letO; (resp.I;) be the set of output (resp.
input) vertices of theé-th copy. In addition, add input verticed, = [n] and match
them to the first vertices of each of the output clusters (i.e., connecjjttiever-
tex of Iy to the vertex2j — 1 of eachO;). Let H = ((Out = O1 U+ --U Oy, In =
LU---Ul,Uly), E). (See Figure 1.) Clearlyd hasm(n + 1) output vertices,
mn + n input vertices, and each output vertex is connected to at xioguts. It
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is not hard to verify thaff is (n?, 1)-expanding. However, the number of outputs
is only slightly larger than the number of inputs; i.®ut| — |In| = m —n < m
which is sublinear inIn| whenn is non-constant.

Figure 1: The graplt with n = 2 andm = 3. Black circles denote output vertices
while empty circles denote input vertices.

However, when the locality of the pseudorandom gener@t constant and
the stretch is lineat; is a sparse bipartite graph havingnput verticess(n) =
n+(n) output vertices, and a constant output degree. It seems that it is not trivial
to explicitly construct such a graph that achiefeflog n), 1)-expansion. (Indeed,
the construction of [11] gives similar graphs whose expansion is even stronger,
but this construction is highly non-trivial.) Hence, any construction of LPRG in
NC defines a non-trivial combinatorial structure. In particular, one cannot hope
that “simple” deterministictransformations, such as those given in [4], will yield
LPRGs inNC.

Note that an exponentially strong PRG (or exponentially steebégased gen-
erator) with linear stretch gives &f2(n), 1)-expander graph whose output size
grows linearly with its input size. Indeed, the exponentially stroitgased gener-
ator of [23] is based on a similar (but slightly stronger) unbalanced expander. The
above argument shows that such an ingredient is necessary.
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A Alekhnovich’s Assumption Implies Assumption 5.1

We show that Alekhnovich’s Assumption [1, Conjecture 2, Remark 1] implies As-
sumption 5.1. The main difference between the two assumptions is that the noise
vectore in [1] is a random vector of weight exactfy.m |, as opposed to our noise
vector whose entries are chosen to be 1 independently with probabilitiie im-
plication follows from the fact that our noise vectors can be viewed as a convex
combination of noise vectors of fixed weight. We give the details below.

Recall that for ann x n matrix M we IetDM(M) denote the distribution of
M - x + e, wherezx is a randomn-bit vector ande is a noise vector which is
uniformly distributed over alin-bits vectors whose Hamming weightism. The
distribution D, (M) £ M -z + e is analogous t(ﬁu(M), except that each entry
of the noise vectoe is chosen to be 1 with probability (independently of other
entries).

Assumption A.1 (Alekhnovich’s Assumption)yor anym(n) = O(n), there ex-
ists an infinite family of matrice§M,, }nen, My, € M,y () .3, SUCh that for any
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constantd < ug < 1/2, and functionu(n) that satisfiegiy < p(n) < 1/2 for
everyn, it holds that

c A

D) (Mn) = D) 4m(n) -1 (Mn)

Fix a matrix family {M,, },cn of sizem(n) x n wherem(n) is an integer
valued function. We will prove that Assumption A.1 instantiated with the family
{M,, }nen implies Assumption 5.1 instantiated with the same family of matrices.
To do this we use the following two intermediate assumptions.

Assumption A.2 For any constan0 < po < 1/2, and functiory(n) that satisfies
po < p(n) < 1/2forall n's, DH(”) (M) ~ Um(n)

Assumption A.3 For any constan0 < x < 1/2, we haveD,,(M,,) ~ Unn(n)-

In [1, Thm. 3.1] it is shown that Assumption A.1 implies Assumption A.2.
Hence to prove that Assumption A.1 implies Assumption 5.1 it suffices to show
that: (1) Assumption A.2 implies Assumption A.3; and (2) Assumption A.3 implies
Assumption 5.1.

Lemma A.4 Assumption A.2 implies Assumption A.3.

Proof:  Suppose that Assumption A.3 does not hold. Then, for some constant
0 < p < 1/2, the distributionD,,(M,,) is not pseudorandom. That is, there exists
a polynomial-size circuit family{ A,,} and a polynomiaf(-) such that

Pr[An (D, (My)) = 1] — Pr[An(Um(n)) =1] > 1/q(n), (8)

for infinitely manyn’s. We will show that, for some constaft< gg < 1/2,
and functionji(n) that satisfiegiy < i(n) < 1/2, Assumption A.2 is violated.
Namely, Pr[A,,(Djn) (M) = 1] — Pr[A,(Upey) = 1] > 1/¢'(n) for some
polynomialg’(-) and infinitely manyn’s.

Fix somen for which Eq. 8 holds, and let. = m(n). Letp £ Pr[A,(Du(My)) =
1] andp(k) = Pr[A,(Dy/m(M,)) = 1] for 0 < k < m. Lete € {0,1}" be a
random error vector in which each entry is chosen to be 1 with probapi(ityde-
pendently of other entries) and lg#) be the probability that contains exactly:
ones. We can think of the distribution ©fs the outcome of the following process:
first choose) < k < m with probabilityt(k), then choose a random noise vector
of weightk. Hence, we can write,

p=>_ p(k)-tk).

=0
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Lete > 0 be a constant for which - < 1/2. Then, by a Chernoff bound, it holds
that

Yootk + Y t(k):Pr[

k<(l—e)-pm E>(1+¢€)-pm

m
Zei—,um

=1

>e- ,um] < 2¢E nm/3,

Hence, ,
Z p(k) - t(k) > p— 2e~ HmM/3,
(1—€)-pm<k< (14€)-pm
Thus, by an averaging argument, there exists sames) - um < k < (1—¢)-um
for which ,
p(k) > p — 2e Hm/3,
Let i(n) bek/m and letjiy be the constantl — ¢) - um/2. Then, by Eq. 8, we
have

Pr[An(Djny(Mn)) = 1=Pr{A(Upnny) = 1] > 1/g(n)=2¢=#™/% > 1/ (),

where¢/(+) is a polynomial. This completes the proof singe< fi(n) < 1/2 for
everyn. [
It is left to prove the following lemma.

Lemma A.5 If Assumption A.3 holds then Assumption 5.1 also holds with respect
to {Mn}neN-

Proof:  As shown in the proof of Lemma 5.3 we can writg, -1 (M,) =
D,(M,) + r,, wherer,, denotes the distribution of an-bit vector in which each
entry is chosen to be 1 with probabilitym (independently of other entries) for
some constant. Hence, by two invocations of Assumption A.3, we have

Dyt (My) = Dp(My) + 1 = Uy + 7 = Upany = Dyu(M).
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