
Computationally Private Randomizing Polynomials
and Their Applications∗

Benny Applebaum Yuval Ishai Eyal Kushilevitz

Computer Science Department, Technion
{abenny,yuvali,eyalk}@cs.technion.ac.il

March 5, 2006

Abstract

Randomizing polynomialsallow to represent a functionf(x) by a low-degree randomized mapping
f̂(x, r) whose output distribution on an inputx is a randomized encodingof f(x). It is known that any
function f in uniform-⊕L/poly (and in particular inNC1) can be efficiently represented by degree-3
randomizing polynomials. Such a degree-3 representation gives rise to anNC0

4 representation, in which
every bit of the output depends on only 4 bits of the input.

In this paper, we study the relaxed notion ofcomputationally privaterandomizing polynomials,
where the output distribution of̂f(x, r) should only becomputationally indistinguishablefrom a ran-
domized encoding off(x). We construct degree-3 randomizing polynomials of this type for every
polynomial-timecomputable function, assuming the existence of a cryptographic pseudorandom gen-
erator (PRG) in uniform-⊕L/poly. (The latter assumption is implied by most standard intractability
assumptions used in cryptography.) This result is obtained by combining a variant of Yao’sgarbled
circuit technique with previous “information-theoretic” constructions of randomizing polynomials.

We then present the following applications:

• Relaxed assumptions for cryptography inNC0. Assuming a PRG in uniform-⊕L/poly, the
existence of anarbitrary public-key encryption, commitment, or signature scheme implies the
existence of such a scheme inNC0

4. Previously, one needed to assume the existence of such
schemes in uniform-⊕L/poly or similar classes.

• New parallel reductions between cryptographic primitives.We show that even some relatively
complex cryptographic primitives, including (stateless) symmetric encryption and digital signa-
tures, areNC0-reducible to a PRG. No parallel reductions of this type were previously known,
even inNC. Our reductions make a non-black-box use of the underlying PRG.

• Application to secure multi-party computation. Assuming a PRG in uniform-⊕L/poly, the task
of computing anarbitrary (polynomial-time computable) function with computational security
can be reduced to the task of securely computing degree-3 polynomials (say, overGF(2)) without
further interaction. This gives rise to new, conceptually simpler, constant-round protocols for
general functions.

∗A preliminary version of this paper appeared in the proceedings of CCC 2005. Research supported by grant no. 36/03 from the
Israel Science Foundation.

1 Introduction

To what extent can one simplify the task of computing a functionf by settling for computing some (pos-
sibly randomized)encodingof its output? The study of this question was initiated in the context of secure
multi-party computation [IK00, IK02], and has recently found applications to parallel constructions of cryp-
tographic primitives [AIK04]. In this paper we consider a relaxed variant of this question and present some
new constructions and cryptographic applications.

The above question can be formally captured by the following notion. We say that a functionf̂(x, r) is
a randomized encodingof a functionf(x), if its output distribution depends only on the output off . More
precisely, we require that: (1) given̂f(x, r) one can efficiently recoverf(x), and (2) givenf(x) one can
efficiently sample from the distribution of̂f(x, r) induced by a uniform choice ofr.

This notion of randomized encoding defines a nontrivial relaxation of the usual notion of computing,
and thus gives rise to the following question: Can we encode “complex” functionsf by “simple” functions
f̂? This question is motivated by the fact that in many cryptographic applications,f̂ can be securely used as
a substitute forf [IK00, AIK04]. For instance, iff is a one-way function then so iŝf . It should be noted
that different applications motivate different interpretations of the term “simple” above. In the context of
multi-party computation, one is typically interested in minimizing the algebraicdegreeof f̂ , viewing it as a
vector of multivariate polynomials over a finite field. In this context,f̂ was referred to as a representation
of f by randomizing polynomials[IK00]. In other contexts it is natural to vieŵf as a function over binary
strings and attempt to minimize its parallel time complexity [AIK04]. From here on, we will refer tof̂ as
a “randomized encoding” off (or simply “encoding” for short) except when we wish to stress that we are
interested in minimizing the degree.

It was shown in [IK00, IK02] that every functionf in⊕L/poly1 can be efficiently represented by degree-
3 randomizing polynomials overGF(2).2 Moreover, every degree-3 encoding can in turn be converted into
an NC0 encoding with locality 4, namely one in which every bit of the output depends on only 4 bits
of the input [AIK04]. A major question left open by the above results is whether everypolynomial-time
computable function admits an encoding inNC0.

In this work we consider a relaxed notion ofcomputationally privaterandomized encodings, where re-
quirement (2) above is relaxed to allow sampling from a distribution which iscomputationally indistinguish-
able from f̂(x, r). As it turns out, computationally private encodings are sufficient for most applications.
Thus, settling the latter question for the relaxed notion may be viewed as a second-best alternative.

1.1 Overview of Results and Techniques

We construct a computationally private encoding inNC0 for everypolynomial-timecomputable function, as-
suming the existence of a “minimal” cryptographic pseudorandom generator (PRG) [BM84, Yao82], namely
one that stretches its seed by just one bit, in⊕L/poly.3 We refer to the latter assumption as the “Easy PRG”
(EPRG) assumption. (This assumption can be slightly relaxed, e.g., to also be implied by the existence of
a PRG inNL/poly; see Remark 4.16.) We note that EPRG is a very mild assumption. In particular, it is

1For brevity, all complexity classes are assumed to be polynomial-time uniform by default. In particular, the class⊕L/poly
is assumed to be polynomial-time uniform. (See Section 2 for a definition of this class.) The class⊕L/poly containsL/poly
andNC1 and is contained inNC2. In the non-uniform settingnonuniform-⊕L/poly also containsnonuniform-NL/poly [Wig94].
However, such an inclusion is not known to hold in the uniform setting.

2This result generalizes to arbitrary finite fields [IK02] or even rings [CFIK03], allowing efficient degree-3 representations of
various counting logspace classes.

3It is not known whether such a minimal PRG implies a PRG in the same class that stretches its seed by a linear or superlinear
amount.

2

implied by most concrete intractability assumptions commonly used in cryptography, such as ones related
to factoring, discrete logarithm, or lattice problems (see [AIK04, Remark 6.6]). It is also implied by the ex-
istence in⊕L/poly of a one-way permutation or, using [HILL99], of anyregular one-way function (OWF);
i.e., a OWFf = {fn} that maps the same (polynomial-time computable) number of elements in{0, 1}n to
every element in Im(fn). (This is the case, for instance, for any one-to-one OWF.)4 TheNC0 encoding we
obtain under the EPRG assumption has degree 3 and locality 4. Its size is nearly linear in the circuit size of
the encoded function.

We now give a high-level overview of our construction. Recall that we wish to encode a polynomial-
time computable function by anNC0 function. To do this we rely on a variant of Yao’sgarbled circuit
technique [Yao86]. Roughly speaking, Yao’s technique allows to efficiently “encrypt” a boolean circuit in
a way that enables to compute the output of the circuit but “hides” any other information about the circuit’s
input. These properties resemble the ones required for randomized encoding.5 Moreover, the garbled circuit
enjoys a certain level of locality (or parallelism) in the sense that gates are encrypted independently of each
other. Specifically, each encrypted gate is obtained by applying some cryptographic primitive (typically, a
high-stretch PRG or an encryption scheme with special properties), on a constant number of (long) random
strings and, possibly, a single input bit. However, the overall circuit might not have constant locality (it might
not even be computable inNC) as the cryptographic primitive being used in the gates might be sequential in
nature. Thus, the bottleneck of the construction is the parallel time complexity of the primitive being used.

Recently, it was shown in [AIK04] (via “information theoretic” randomized encoding) that under rela-
tively mild assumptions many cryptographic primitives can be computed inNC0. Hence, we can try to plug
one of these primitives into the garbled circuit construction in order to obtain an encoding with constant
locality. However, a direct use of this approach would require stronger assumptions6 than EPRG and result
in anNC0 encoding with inferior parameters. Instead, we use the following variant of this approach.

Our construction consists of three steps. The first step is anNC0 implementation ofone-time symmetric
encryptionusing a minimal PRG as an oracle. (Such an encryption allows to encrypt a single message
whose length may be polynomially larger than the key.Note that we are only assuming the existence of a
minimal PRG, i.e., a PRG that stretches its seed only by one bit. Such a PRG cannot be directly used to
encrypt long messages.) The second and main step of the construction relies on a variant of Yao’s garbled
circuit technique[Yao86] to obtain an encoding inNC0 which uses one-time symmetric encryption as an
oracle. By combining these two steps we get an encoding that can be computed by anNC0 circuit which
uses a minimal PRG as an oracle. Finally, using the EPRG assumption and [AIK04], we apply a final step
of “information-theoretic” encoding to obtain an encoding inNC0 with degree 3 and locality 4.

The above result gives rise to several types of cryptographic applications, discussed below.

1.1.1 Relaxed assumptions for cryptography inNC0

The question of minimizing the parallel time complexity of cryptographic primitives has been the subject
of an extensive body of research (see [NR99, AIK04] and references therein). Pushing parallelism to the
extreme, it is natural to ask whether one can implement cryptographic primitives inNC0. While it was

4Using [HILL99] or [HHR05] this regularity requirement can be relaxed. See [AIK04, Footnote 14].
5This similarity is not coincidental as both concepts were raised in the context of secure multiparty computation. Indeed, an

information theoretic variant of Yao’s garbled circuit technique was already used in [IK02] to construct low degree randomized
encoding forNC1 functions.

6Previous presentations of Yao’s garbled circuit relied on primitives that seem less likely to allow anNC0 implementation.
Specifically, [BMR90, NPS99] require linear stretch PRG and [LP04] requires symmetric encryption that enjoys some additional
properties.

3

known that few primitives, including pseudorandomfunctions[GGM86], cannot even be implemented in
AC0 [LMN93], no similar negative results were known for other primitives.

Very recently, it was shown in [AIK04] that the existence of most cryptographic primitives inNC0 fol-
lows from their existence in higher complexity classes such as⊕L/poly, which is typically a very mild
assumption. This result was obtained by combining the results on (information-theoretic) randomized en-
codings mentioned above with the fact that the security of most cryptographic primitives is inherited by their
randomized encoding.

Using our construction of computationally private encodings, we can further relax the sufficient as-
sumptions for cryptographic primitives inNC0. The main observation is that the security of most primitives
is also inherited by their computationally private encoding. This is the case even for relatively “sophisti-
cated” primitives such as public-key encryption, digital signatures, (computationally hiding) commitments,
and (interactive or non-interactive) zero-knowledge proofs. Thus, given that these primitives at all exist,7

their existence inNC0 follows from the EPRG assumption, namely from the existence of a PRG in com-
plexity classes such as⊕L/poly. Previously (using [AIK04]), the existence of each of these primitives in
NC0 would only follow from the assumption that this particular primitive can be implemented in the above
classes, a seemingly stronger assumption than EPRG.

It should be noted that we cannot obtain a similar result for some other primitives, such as one-way
permutations and collision-resistant hash functions. The results for these primitives obtained in [AIK04]
rely on certain regularity properties of the encoding that are lost in the transition to computational privacy.

1.1.2 Parallel reductions between cryptographic primitives

The results of [AIK04] also give rise to newNC0 reductionsbetween cryptographic primitives. (Unlike
the results discussed in Section 1.1.1 above, here we considerunconditionalreductions that do not rely on
unproven assumptions.) In particular, knownNC1-reductions from PRG to one-way permutations [GL89]
or even to more general types of one-way functions [HILL99, Vio05, HHR05] can be encoded intoNC0-
reductions (see [AIK04, Remark 6.7]). However, theseNC0-reductions crucially rely on the very simple
structure of theNC1-reductions from which they are derived. In particular, it is not possible to use the
results of [AIK04] for encoding generalNC1-reductions (let alone polynomial-time reductions) intoNC0-
reductions.

As a surprising application of our technique, we get a general “compiler” that converts an arbitrary
(polynomial-time) reduction from a primitiveP to a PRG into anNC0-reduction fromP to a PRG. This
applies to all primitivesP that are known to be equivalent to a one-way function, and whose security is
inherited by their computationally-private encoding. In particular, we conclude that symmetric encryption,8

commitment, and digital signatures are allNC0-reducible to aminimal PRG (hence also to a one-way
permutation or more general types of one-way functions).

No parallel reductions of this type were previously known, even inNC. The known construction of
commitment from a PRG [Nao91] requires a linear-stretch PRG (expandingn bits into n + Ω(n) bits),
which is not known to be reduciblein parallel to a minimal PRG. Other primitives, such as symmetric
encryption and signatures, were not even known to be reducible in parallel to a polynomial-stretch PRG. For
instance, the only previous parallel construction of symmetric encryption from a “low-level” primitive is

7This condition is redundant in the case of signatures and commitments, whose existence follows from the existence of a PRG.
In Section 1.1.2 we will describe a stronger result for such primitives.

8 By symmetric encryption we refer to (probabilistic)statelessencryption for multiple messages, where the parties do not
maintain any state information other than the key. If parties are allowed to maintain synchronized states, symmetric encryption can
be easily reduced inNC0 to a PRG.

4

based on the parallel PRF construction of [NR99]. This yields anNC1-reduction from symmetric encryption
to synthesizers, a stronger primitive than a PRG. Thus, we obtain better parallelism and at the same time
rely on a weaker primitive. The price we pay is that we cannot generally guarantee paralleldecryption. (See
Section 5.2 for further discussion.)

An interesting feature of the new reductions is theirnon-black-boxuse of the underlying PRG. That is,
the “code” of theNC0-reduction we get (implementingP using an oracle to a PRG) depends on the code of
the PRG. This should be contrasted with most known reductions in cryptography, which make a black-box
use of the underlying primitive. In particular, this is the case for the abovementionedNC0-reductions based
on [AIK04]. (See [RTV04] for a thorough taxonomy of reductions in cryptography.)

1.1.3 Application to secure computation

The notion of randomizing polynomials was originally motivated by the goal of minimizing the round com-
plexity of secure multi-party computation [Yao86, GMW87, BGW88, CCD88]. The main relevant obser-
vations made in [IK00] were that: (1) the round complexity of most general protocols from the literature is
related to thedegreeof the function being computed; and (2) iff is represented by a vector̂f of degree-d
randomizing polynomials, then the task of securely computingf can be reduced to that of securely com-
puting somedeterministicdegree-d function f̂ ′ which is closely related tôf . This reduction fromf to f̂ ′

is fully non-interactive, in the sense that a protocol forf can be obtained by invoking a protocol forf̂ and
applying alocal computation on its outputs (without additional interaction).

A useful corollary of our results is that under the EPRG assumption, the task of securely computing an
arbitrary polynomial-time computable functionf reduces (non-interactively) to that of securely computing
a related degree-3 function̂f ′. This reduction is onlycomputationallysecure. Thus, even if the underlying
protocol forf̂ ′ is secure in an information-theoretic sense, the resulting protocol forf will only be compu-
tationally secure. (In contrast, previous constructions of randomizing polynomials maintainedinformation-
theoreticsecurity, but only efficiently applied to restricted function classes such as⊕L/poly.) This reduction
gives rise to new, conceptually simpler, constant-round protocols for general functions. For instance, a com-
bination of our result with the classical “BGW protocol” [BGW88] gives a simpler, and in some cases more
efficient, alternative to the constant-round protocol of Beaver, Micali and Rogaway [BMR90] (though relies
on a stronger assumption).

Organization. Following some preliminaries (Section 2), in Section 3 we review previous notions of ran-
domized encoding and define our new notion of computationally private encoding. In Section 4 we construct
a computationally private encoding inNC0 for every polynomial-time computable function. Finally, appli-
cations of this construction are discussed in Section 5.

2 Preliminaries

Probability notation. We letUn denote a random variable uniformly distributed over{0, 1}n. If X is a
probability distribution, or a random variable, we writex ← X to indicate thatx is a sample taken fromX.
Thestatistical distancebetween discrete probability distributionsY andY ′, denotedSD(Y, Y ′), is defined
as the maximum, over all functionsA, of thedistinguishing advantage|Pr[A(Y) = 1] − Pr[A(Y ′) = 1]|.
A function ε(·) is said to benegligible if ε(n) < n−c for any constantc > 0 and sufficiently largen.
For two distribution ensembles{Xn}n∈N and{Yn}n∈N, we write{Xn}n∈N ≡ {Yn}n∈N if Xn andYn are
identically distributed, and say that the two ensembles are statistically indistinguishable ifSD(Xn, Yn) is

5

negligible inn. A weaker notion of closeness between distributions is that ofcomputationalindistinguisha-
bility: We write {Xn}n∈N

c≡ {Yn}n∈N if for every (non-uniform) polynomial-size circuit family{An}, the
distinguishing advantage|Pr[An(Xn) = 1] − Pr[An(Yn) = 1]| is negligible. (We will sometimes sim-
plify notation and writeXn

c≡ Yn.) By default we adapt this non-uniform notion of indistinguishability.
However, our results also apply in a uniform setting in which adversaries are probabilistic polynomial-time
algorithms.

We will rely on several standard facts about computational indistinguishability (cf. [Gol01, Chapter 2]).

Fact 2.1 For every distribution ensemblesX,Y andZ, if X
c≡ Y andY

c≡ Z thenX
c≡ Z.

That is, computational indistinguishability is transitive. The following fact asserts that computational
indistinguishability is preserved under multiple independent samples:

Fact 2.2 Let{Xn}, {X ′
n}, {Yn} and{Y ′

n} be distribution ensembles. Suppose thatXn
c≡ Yn andX ′

n
c≡ Y ′

n.
Then(Xn × X ′

n)
c≡ (Yn × Y ′

n), whereA × B denotes the product distribution ofA,B (i.e., the joint
distribution of independent samples fromA andB).

Another basic fact is that computational indistinguishability is preserved under efficient computation:

Fact 2.3 Suppose that that the distribution ensembles{Xn} and{Yn} are computationally indistinguish-
able. Then for every polynomial-time computable functionf we havef(Xn)

c≡ f(Yn).

Consider a case in which two probabilistic (possibly computationally unbounded) algorithms behave
“similarly” on every input, in the sense that their output distributions are computationally indistinguishable.
The following two facts deal with such a situation. Fact 2.4 asserts that an efficient procedure that gets an
oracle access to one of these algorithms cannot tell which algorithm it communicates with. Fact 2.5 asserts
that the outputs of these algorithms cannot be distinguished with respect to any (not necessarily efficiently
samplable) input distribution. These facts will allow us to argue that, in most applications, computationally-
private encodings can be securely used as substitutes for perfectly private encodings.

Fact 2.4 LetX andY be probabilistic algorithms such that for every string family{zn}wherezn ∈ {0, 1}n,
it holds thatX(zn)

c≡ Y (zn). Then, for any (non-uniform) polynomial-time oracle machineA, it holds that
AX(1n)

c≡ AY (1n) (whereA does not haveaccess to the random coins of the given probabilistic oracle).

Fact 2.5 LetX andY be probabilistic algorithms such that for every string family{zn}wherezn ∈ {0, 1}n,
it holds thatX(zn)

c≡ Y (zn). Then, for every distribution ensemble{Zn} whereZn is distributed over
{0, 1}n, we have(Zn, X(Zn))

c≡ (Zn, Y (Zn)).

Circuits. Boolean circuits are defined in a standard way. That is, we define a boolean circuitC as a
directed acyclic graph with labeled, ordered vertices of the following types: (1)input vertices, each labeled
with a literal xi or x̄i and having fan-in 0; (2)gate vertices, labeled with one of the boolean functions
AND,OR and having fan-in 2; (3)outputvertices, labeled “output” and having fan-in 1 and fan-out 0. The
edges of the circuit are referred to aswires. A wire that outgoes from an input vertex is called aninput wire,
and a wire that enters an output vertex is called anoutput wire. Any input x ∈ {0, 1}n assigns a unique
valueto each wire in the natural way. The output value ofC, denotedC(x), contains the values of the output
wires according to the given predefined order. Thesizeof a circuit, denoted|C|, is the number of wires in
C, and itsdepthis the maximum distance from an input to an output (i.e. the length of the longest directed
path in the graph).

6

NCi-reductions. A circuit with an oracle access to a functiong : {0, 1}∗ → {0, 1}∗ is a circuit that
contains, in addition to the bounded fan-in OR, AND gates, specialoracle gateswith unbounded fan-in that
compute the functiong. We say thatf : {0, 1}∗ → {0, 1}∗ is NCi reducibleto g, and writef ∈ NCi[g],
if f can be computed by a uniform family of polynomial size,O(logi n) depth circuits with oracle gates to
g. (Oracle gates are treated the same as AND/OR gates when defining depth.) Note that iff ∈ NCi[g] and
g ∈ NCj thenf ∈ NCi+j .

Locality and degree. We say thatf is c-local if each of its output bits depends on at mostc input bits. For
a constantc, the class nonuniform-NC0c includes allc-local functions. We will sometimes view the binary
alphabet as the finite fieldF = GF(2), and say that a functionf has degreed if each of its output bits can
be expressed as a multivariate polynomial of degree (at most)d in the input bits.

Complexity classes. For brevity, we use the (somewhat nonstandard) convention that all complexity
classes are polynomial-time uniform by default.For instance,NC0 refers to the class of functions admitting
polynomial-time uniformNC0 circuits, whereasnonuniform-NC0 refers to the class of functions admitting
non-uniformNC0 circuits. We letNL/poly (resp.,⊕L/poly) denote the class of boolean functions com-
puted byNL (resp.,⊕L) Turing machines taking a polynomial-time uniform advice. (The class⊕L/poly
contains the classesL/poly andNC1 and is contained inNC2.) We extend boolean complexity classes,
such asNL/poly and⊕L/poly, to include non-boolean functions by letting the representation include`(n)
log-space Turing machines, one for each output bit, taking the same uniform advice. Similarly, we denote
by P (resp.BPP) the class offunctionsthat can be computed in polynomial time (resp. probabilistic poly-
nomial time). For instance, a functionf : {0, 1}n → {0, 1}`(n) is in BPP if there exists a probabilistic
polynomial-time machineA such that for everyx ∈ {0, 1}n it holds thatPr[A(x) 6= f(x)] ≤ 2−n, where
the probability is taken over the internal coin tosses ofA.

3 Randomized Encodings

We now review the notions of randomized encoding and randomizing polynomials from [IK00, IK02,
AIK04], and introduce the new computationally private variant discussed in this paper. The following
definition is from [AIK04].

Definition 3.1 (Randomized encoding)Let f : {0, 1}n → {0, 1}` be a function. We say that a function
f̂ : {0, 1}n × {0, 1}m → {0, 1}s is a δ-correct, ε-private randomized encodingof f , if it satisfies the
following:

• δ-correctness.There exists an algorithmB, called adecoder, such that for any inputx ∈ {0, 1}n,
Pr[B(f̂(x, Um)) 6= f(x)] ≤ δ.

• ε-privacy. There exists a randomized algorithmS, called asimulator, such that for anyx ∈ {0, 1}n,
SD(S(f(x)), f̂(x,Um)) ≤ ε.

We refer to the second input of̂f as itsrandom input, and tom, s as therandomness complexityand the
output complexityof f̂ respectively. Thecomplexityof f̂ is defined to bem + s.

We say thatf̂ is a representation (or encoding) off by degree-d randomizing polynomialsif each of its
output bits can be computed by a multivariate polynomial overGF(2) of degree at mostd in the inputs.

7

Definition 3.1 naturally extends to infinite functionsf : {0, 1}∗ → {0, 1}∗. In this case, the parameters
`,m, s, δ, ε are all viewed as functions of the input lengthn, and the algorithmsB,S receive1n as an addi-
tional input. By default, we requirêf to be computable inpoly(n) time wheneverf is. In particular, both
m(n) ands(n) are polynomially bounded. We also require both the decoder and the simulator algorithms
to be efficient.

Several variants of randomized encodings were considered in [AIK04]. Correctness (resp., privacy) is
said to beperfectwhenδ = 0 (resp.ε = 0) or statisticalwhenδ(n) (resp.ε(n)) is negligible. In order
to preserve the security of some primitives (such as pseudorandom generators or one-way permutations)
even perfect correctness and privacy might not suffice and additional requirements should be introduced.
An encoding is said to bebalancedif it admits a perfectly private simulatorS such thatS(U`) ≡ Us. It
is said to bestretch preservingif s = ` + m. We say thatf̂ is a statisticalrandomized encoding off if
it is both statistically correct and statistically private, and that it is aperfectrandomized encoding if it is
perfectly correct and private, balanced, and stretch preserving. In this work, we abandon the information
theoretic setting and relax the privacy requirement to be computational. That is, we require the ensembles
S(1n, fn(x)) andf̂n(x,Um(n)) to be computationally indistinguishable.

Definition 3.2 (Computational randomized encoding)Let f = {fn : {0, 1}n → {0, 1}`(n)}n∈N be a
function family. We say that the function familŷf = {f̂n : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)}n∈N is a
computational randomized encodingof f (or computational encoding for short), if it satisfies the following
requirements:

• Statistical correctness.There exists a polynomial-time decoderB, such that for anyn and any input
x ∈ {0, 1}n, Pr[B(1n, f̂n(x,Um(n))) 6= fn(x)] ≤ δ(n), for some negligible functionδ(n).

• Computational privacy. There exists a probabilistic polynomial-time simulatorS, such that for any
family of strings{xn}n∈N where|xn| = n, we haveS(1n, fn(xn))

c≡ f̂n(xn, Um(n)).

We will also refer toperfectly correctcomputational encodings, where the statistical correctness requirement
is strengthened to perfect correctness. In fact, our main construction yields a perfectly correct encoding.

Remark 3.3 The above definition usesn both as an input length parameter and as a cryptographic “security
parameter” quantifying computational privacy. When describing our construction, it will be convenient to
use a separate parameterk for the latter, where computational privacy will be guaranteed as long ask ≥ nε

for some constantε > 0.

The function classesSREN andPREN were introduced in [AIK04] to capture the power of statistical
and perfect randomized encodings inNC0. We define a similar classCREN .

Definition 3.4 (The classes CREN, SREN, PREN)The classCREN (resp.,SREN ,PREN) is the class
of functionsf admitting a computational (resp., statistical, perfect) randomized encodingf̂ in NC0. (As
usual,NC0 is polynomial-time uniform.)

It follows from the definitions thatPREN ⊆ SREN ⊆ CREN . Moreover, it is known that⊕L/poly ⊆
PREN andNL/poly ⊆ SREN [AIK04]. (We cannot use the fact that nonuniform-NL/poly ⊆nonuniform-
⊕L/poly [Wig94] to conclude thatNL/poly ⊆ PREN , since this inclusion is only known to hold in the
non-uniform setting.)

We end this section by considering the following intuitive composition property: Suppose we encode
f by g, and then viewg as a single-argument function and encode it again. Then, the resulting function

8

(parsed appropriately) is an encoding off . The following lemma was stated in [AIK04] for the statistical
and perfect variants of randomized encodings; we extend it here to the computational variant.

Lemma 3.5 (Composition) Let g(x, rg) be a computational encoding off(x) and h((x, rg), rh) a com-
putational encoding ofg((x, rg)), viewing the latter as a single-argument function. Then, the function

f̂(x, (rg, rh)) def= h((x, rg), rh) is a computational encoding off(x) whose random inputs are(rg, rh).
Moreover, ifg, h are perfectly correct then so iŝf .

Proof: We start with correctness. LetBg be aδg(n)-correct decoder forg andBh a δh(n+mg(n))-
correct decoder forh, wheremg(n) is the randomness complexity ofg. Define a decoderB for f̂ by
B(ŷ) = Bg(Bh(ŷ)). The decoderB errs only if eitherBh or Bg err. Thus, by the union bound we have for
everyx ∈ {0, 1}n,

Pr
rg ,rh

[B(1n, f̂(x, (rg, rh)) 6= f(x)] ≤ Pr
rg ,rh

[Bh(1n, h((x, rg), rh)) 6= g(x, rg)] + Pr
rg

[Bg(1n, g(x, rg)) 6= f(x)]

≤ δh(n+mg(n)) + δg(n),

and soB is perfectlycorrect if both the decoders ofh andg are perfectlycorrect. Moreover, sincemg(n) is
polynomial inn, if the decoders ofh andg are statistically correct then so isB.

To prove computational privacy, we again compose the computationally private simulators ofg andh,
this time in an opposite order. Specifically, letSg be a computationally-private simulator forg andSh be
computationally-private simulator forh. We define a simulatorS for f̂ by S(y) = Sh(Sg(y)). Letting
mg(n) andmh(n) denote the randomness complexity ofg andh, respectively, and{xn}n∈N be a family of
strings where|xn| = n, we have,

Sh(Sg(f(xn)))
c≡ Sh(g(xn, Umg(n))) (sinceg is a comp. private encoding off and by Fact 2.3)
c≡ h((xn, Umg(n)), Umh(n)) (sinceh is a comp. private encoding ofg and by Fact 2.5).

Hence, the transitivity of the relation
c≡ (Fact 2.1) finishes the proof.

It follows as a special case that the composition of a computational encoding with a perfect or a statistical
encoding is a computational encoding.

Remark 3.6 It is known that anyf ∈ PREN (resp.,f ∈ SREN) admits a perfect (resp., statistical)
encoding of degree 3 and locality 4 [AIK04]. The same holds for the classCREN , since we can encode a
functionf ∈ CREN by a computational encodingg in NC0 and then encodeg using a perfect encodingh
of degree 3 and locality 4 (promised by the fact thatNC0 ⊆ PREN). By Lemma 3.5, the functionh is a
computational encoding forf of degree 3 and locality 4. Moreover, the complexity ofh is linearly related
to the complexity ofg.

4 Computational Encoding inNC0 for Efficiently Computable Functions

In this section we construct a perfectly correct computational encoding of degree 3 and locality 4 for every
efficiently computable function. Our construction consists of three steps. In Section 4.1, we describe an
NC0 implementation of one-time symmetric encryption using aminimalPRG as an oracle (i.e., a PRG that
stretches its seed by just one bit). In Section 4.2 we describe the main step of the construction, in which
we encode an arbitrary circuit using anNC0 circuit which uses one-time symmetric encryption as an oracle.

9

This step is based on a variant of Yao’s garbled circuit technique [Yao86]. Combining the first two steps, we
get a computational encoding inNC0 with an oracle to a minimal PRG. Finally, in Section 4.3, we derive
the main result by relying on the existence of an “easy PRG”, namely, a minimal PRG in⊕L/poly.

4.1 From PRG to One-Time Encryption

An important tool in our construction is a one-time symmetric encryption; that is, a (probabilistic) private-
key encryption that is semantically secure [GM84] for encrypting a single message. We describe anNC0-
reduction from such an encryption to a minimal PRG, stretching its seed by a single bit. We start by defining
minimal PRG and one-time symmetric encryption.

Definition 4.1 (Pseudorandom generator)A pseudorandom generator (PRG) is a deterministic polynomial-
time algorithm,G, satisfying the following two conditions:

• Expansion: There exists a functioǹ(k) : N → N satisfying that̀ (k) > k for all k ∈ N, such that
|G(x)| = `(|x|) for all x ∈ {0, 1}∗.

• Pseudorandomness: The distribution ensembles{G(Uk)}k∈N and {U`(k)}k∈N are computationally
indistinguishable.

A PRG that stretches its input by one bit (i.e.,`(k) = k + 1) is referred to as aminimal PRG. When
`(k) = k + Ω(k) we say thatG is a linear-stretchPRG. We refer toG as apolynomial-stretchPRG if
`(k) = Ω(kc) for some constantc > 1.

Definition 4.2 (One-time symmetric encryption)Aone-time symmetric encryption schemeis a pair(E, D),
of probabilistic polynomial-time algorithms satisfying the following conditions:

• Correctness:For everyk-bit keye and for every plaintextm ∈ {0, 1}∗, the algorithmsE, D satisfy

De(Ee(m)) = m (whereEe(m) def= E(e,m) and similarly forD).

• Security: For every polynomial̀ (·), and every families of plaintexts{xk}k∈N and {x′k}k∈N where
xk, x

′
k ∈ {0, 1}`(k), it holds that

{EUk
(xk)}k∈N

c≡ {EUk
(x′k)}k∈N.

The integerk serves as thesecurity parameterof the scheme. The scheme is said to be`(·)-one-time symmet-
ric encryption scheme if correctness and security hold with respect to plaintexts whose length is bounded by
`(k).

The above definition enables to securely encrypt polynomially long messages under short keys. This is
an important feature that will be used in our garbled circuit construction described in Section 4.2. In fact, it
would suffice for our purposes to encrypt messages of some fixed polynomial9 length, saỳ (k) = k2. This
could be easily done inNC0 if we had oracle access to a PRG with a corresponding stretch. Given such a
PRGG, the encryption can be defined byEe(m) = G(e) ⊕m and the decryption byDe(c) = G(e) ⊕ c.
However, we would like to base our construction on a PRG with a minimal stretch.

From the traditional “sequential” point of view, such a minimal PRG is equivalent to a PRG with an
arbitrary polynomial stretch (cf. [Gol01, Thm. 3.3.3]). In contrast, this is not known to be the case with

9Applying the construction to circuits with a bounded fan-out, even linear length would suffice.

10

respect to parallel reductions. It is not even known whether a linear-stretch PRG isNC-reducible to a
minimal PRG (see [Vio05] for some relevant negative results). Thus, a minimal PRG is a more conser-
vative assumption from the point of view of parallel cryptography. Moreover, unlike a PRG with linear
stretch, a minimal PRG is reducible in parallel to one-way permutations and other types of one-way func-
tions [HILL99, Vio05, AIK04].

The above discussion motivates adirectparallel construction of one-time symmetric encryption using a
minimal PRG, i.e., a construction that does not rely on a “stronger” type of PRG as an intermediate step.
We present such anNC0 construction below.

Construction 4.3 (From PRG to one-time symmetric encryption)LetG be a minimal PRG that stretches
its input by a single bit, lete be ak-bit key, and letm be a(k + `)-bit plaintext. Define the probabilistic

encryption algorithmEe(m, (r1, . . . , r`−1))
def= (G(e)⊕r1, G(r1)⊕r2, . . . , G(r`−2)⊕rl−1, G(r`−1)⊕m),

whereri ← Uk+i serve as the coin tosses ofE. The decryption algorithmDe(c1, . . . , c`−1) setsr0 = e,
ri = ci ⊕G(ri−1) for i = 1, . . . , `, and outputsr`.

We prove thesecurity of Construction 4.3via a standard hybrid argument.

Lemma 4.4 The scheme(E,D) described in Construction 4.3 is a one-time symmetric encryption scheme.

Proof: Construction 4.3 can be easily verified to satisfy the correctness requirement. We now prove the
security of this scheme. Assume, towards a contradiction, that Construction 4.3 is not secure. It follows
that there is a polynomial̀(·) and two families of stringsx = {xk} andy = {yk} where|xk| = |yk| =
k + `(k), such that the distribution ensemblesEe(xk) andEe(yk) wheree ← Uk, can be distinguished by a
polynomial size circuit family{Ak} with non-negligible advantageε(k).

We use a hybrid argument to derive a contradiction. Fix somek. For a stringm of lengthk + `(k) we
define for0 ≤ i ≤ `(k) the distributionsHi(m) in the following way. The distributionH0(m) is defined to
beEr0(m, (r1, . . . , rl−1)) whereri ← Uk+i. For1 ≤ i ≤ `(k), the distributionHi(m) is defined exactly
asHi−1(m) only that the stringG(ri−1) is replaced with a random stringwi−1, which is one bit longer
thanri−1 (that is,wi−1 ← Uk+i). Observe that for everym ∈ {0, 1}k+`(k), all the `(k) strings of the
hybrid H`(k)(m) are distributed uniformly and independently (each of them is the result of XOR with a
fresh random stringwi). Therefore, in particular,H`(k)(xk) ≡ H`(k)(yk). SinceH0(xk) ≡ Ee(xk) as well
asH0(yk) ≡ Ee(yk), it follows that our distinguisherAk distinguishes, w.l.o.g., betweenH`(k)(xk) and
H0(xk) with at leastε(k)/2 advantage. Then, since there are`(k) hybrids, there must be1 ≤ i ≤ `(k) such
that the neighboring hybrids,Hi−1(xk),Hi(xk), can be distinguished byAk with ε(k)

2`(k) advantage.
We now show how to useAk to distinguish a randomly chosen string from an output of the pseudoran-

dom generator. Given a stringz of lengthk + i (that is either sampled fromG(Uk+i−1) or from Uk+i),
we uniformly choose the stringsrj ∈ {0, 1}k+j for j = 1, . . . , `(k) − 1. We feedAk with the sample
(r1, . . . , ri−1, z ⊕ ri, G(ri) ⊕ ri+1, . . . , G(r`(k)−1) ⊕ xk). If z is a uniformly chosen string then the above
distribution is equivalent toHi(xk). On the other hand, ifz is drawn fromG(Ui) then the result is dis-
tributed exactly asHi−1(xk), since each of the firsti − 1 entries ofHi−1(xk) is distributed uniformly and
independently of the remaining entries (each of these entries was XOR-ed with a fresh and unique random
wj). Hence, we constructed an adversary that breaks the PRG with non-negligible advantageε(k)

2`(k) , deriving
a contradiction.

Since the encryption algorithm described in Construction 4.3 is indeed anNC0 circuit with oracle access
to a minimal PRG, we get the following lemma.

Lemma 4.5 LetG be a minimal PRG. Then, there exists one-time symmetric encryption scheme(E, D) in
which the encryption functionE is in NC0[G].

11

Note that the decryption algorithm of the above construction is sequential. We can parallelize it (without
harming the parallelization of the encryption) at the expense of strengthening the assumption we use.

Claim 4.6 LetPG (resp.LG) be a polynomial-stretch (resp. linear-stretch) PRG. Then, for every polyno-
mial p(·) there exists ap(·)-one-time symmetric encryption scheme(E, D) such thatE ∈ NC0[PG] and
D ∈ NC0[PG] (resp.E ∈ NC0[LG] andD ∈ NC1[LG]).

Proof: Use Construction 4.3 (where|ri| = |G(ri−1)|). When the stretch ofG is polynomial (resp. linear)
the construction requires onlyO(1) (resp.O(log k)) invocations ofG, and therefore, so does the decryption
algorithm.

4.2 From One-Time Encryption to Computational Encoding

Let f = {fn : {0, 1}n → {0, 1}`(n)}n∈N be a polynomial-time computable function, computed by the
uniform circuit family{Cn}n∈N. We use a one-time symmetric encryption scheme(E, D) as a black box to
encodef by a perfectly correct computational encodingf̂ = {f̂n}n∈N. Eachf̂n will be anNC0 circuit with
an oracle access to the encryption algorithmE, where the latter is viewed as a function of the key, the mes-
sage, and its random coin tosses. The construction uses a variant of Yao’s garbled circuit technique [Yao86].
Our notation and terminology for this section borrow from previous presentations of Yao’s construction
in [Rog91, NPS99, LP04].10 Before we describe the actual encoding it will be convenient to think of the
following “physical” analog that uses locks and boxes.

A physical encoding. To each wire of the circuit we assign a pair of keys: a 0-key that represents the value
0 and a 1-key that represents the value 1. For each of these pairs we randomly color one key black and the
other key white. This way, given a key one cannot tell which bit it represents (since the coloring is random).
For every gate of the circuit, the encoding consists of four double-locked boxes – a white-white box (which
is locked by the white keys of the wires that enter the gate), a white-black box (locked by the white key of
the left incoming wire and the black key of the right incoming wire), a black-white box (locked by the black
key of the left incoming wire and the white key of the right incoming wire) and a black-black box (locked
by the black keys of the incoming wires). Inside each box we put one of the keys of the gate’s output wires.
Specifically, if a box is locked by the keys that represent the valuesα, β then for every outgoing wire we
put in the box the key that represents the bitg(α, β), whereg is the function that the gate computes. For
example, if the gate is an OR gate then the box which is locked by the incoming keys that represent the
bits (0, 1) contains all the 1-keys of the outgoing wires. So if one has a single key for each of the incoming
wires, he can open only one box and get a single key for each of the outgoing wires. Moreover, as noted
before, holding these keys does not reveal any information about the bits they represent.

Now, fix some inputx for fn. For each wire, exactly one of the keys corresponds to the value of the wire
(induced byx); we refer to this key as theactive keyand to the second key as theinactivekey. We include
in the encoding offn(x) the active keys of the input wires. (This is the only place in which the encoding
depends on the inputx.) Using these keys and the locked boxes as described above, one can obtain the active
keys of all the wires by opening the corresponding boxes in a bottom-to-top order. To make this information
useful (i.e., to enable decoding offn(x)), we append to the encoding the semantics of the output wires;

10Security proofs for variants of this construction were given implicitly in [Rog91, TX03, LP04] in the context of secure com-
putation. However, they cannot be directly used in our context for different reasons. In particular, the analysis of [LP04] relies
on a special form of symmetric encryption and does not achieve perfect correctness, while that of [Rog91, TX03] relies on a
linear-stretch PRG.

12

namely, for each output wire we expose whether the 1-key is white or black. Hence, the knowledge of the
active key of an output wire reveals the value of the wire.

The actual encoding. The actual encoding is analogous to the above physical encoding. We let random
strings play the role of physical keys. Instead of locking a value in a double-locked box, we encrypt it under
the XOR of two keys. Before formally defining the construction, we need the following notation.Denote
by x = (x1, . . . , xn) the input forfn. Let k = k(n) be a security parameter which may be set tonε for
an arbitrary positive constantε (see Remark 3.3). LetΓ(n) denote the number of gates inCn. For every
1 ≤ i ≤ |Cn|, denote bybi(x) the value of thei-th wire induced by the inputx; whenx is clear from the
context we simply usebi to denote the wire’s value.

Our encodingf̂n(x, (r,W)) consists of random inputs of two types:|Cn| pairs of stringsW 0
i ,W 1

i ∈
{0, 1}2k, and|Cn| bits (referred to as masks) denotedr1, . . . , r|Cn|.

11 The stringsW 0
i ,W 1

i will serve as the
0-key and the 1-key of thei-th wire, while the bitri will determine which of these keys is the black key. We
useci to denote the value of wirei masked byri; namely,ci = bi⊕ ri. Thus,ci is the color of the active key
of thei-th wire (with respect to the inputx). As before, the encodinĝfn(x, (r,W)) will reveal each active
keyW bi

i and its colorci but will hide theinactive keysW 1−bi
i and the masksri of all the wires (except the

masks of the output wires).Intuitively, since theactive keys andinactive keys are distributed identically, the
knowledge of anactive keyW bi

i does not reveal the valuebi.
The encodingf̂n consists of the concatenation ofO(|Cn|) functions, which include several entries for

each gate and for each input and output wire. In what follows⊕ denotes bitwise-xor on strings; when we
want to emphasize that the operation is applied to single bits we will usually denote it by either+ or−. We
use◦ to denote concatenation. For everyβ ∈ {0, 1} and everyi, we view the stringW β

i as if it ispartitioned
into two equal-size parts denotedW β,0

i ,W β,1
i .

Construction 4.7 Let Cn be a circuit that computesfn. Then, we definêfn(x, (r,W)) to be the concate-
nation of the following functions of(x, (r,W)).
Input wires: For an input wirei, labeled by a literal̀ (either some variablexu or its negation) we append
the functionW `

i ◦ (` + ri).
Gates: Lett ∈ [Γ(n)] be a gate that computes the functiong ∈ {AND, OR}with input wiresi, j and output
wiresy1, . . . , ym. We associate with this gate 4 functions that are referred to as gate labels. Specifically,
for each of the 4 choices ofai, aj ∈ {0, 1}, we define a corresponding functionQ

ai,aj

t . This function can be
thought of as the box whose color is(ai, aj). It is defined as follows:

Q
ai,aj

t (r,W) def= E
W

ai−ri,aj
i ⊕W

aj−rj ,ai
j

(
W

g(ai−ri,aj−rj)
y1 ◦ (g(ai − ri, aj − rj) + ry1) ◦ . . . (4.1)

◦W
g(ai−ri,aj−rj)
ym ◦ (g(ai − ri, aj − rj) + rym)

)
,

whereE is a one-time symmetric encryption algorithm. (For simplicity, the randomness ofE is omitted.)
That is, the colored keysof all the output wires of this gate are encrypted under a key that depends on the
keysof the input wires of the gate. Note thatQ

ai,aj

t depends only on the random inputs. We refer to the label
Q

ci,cj

t that is indexed by the colors of the active keysof the input wires as anactive label, and to the other
three labels as theinactive labels.

Output wires: For each output wirei of the circuit, we add the mask of this wireri.

11In fact, each application of the encryption scheme will use some additional random bits. To simplify notation, we keep these
random inputs implicit.

13

It is not hard to verify that̂fn is in NC0[E]. In particular,a term of the formW `
i is a 3-local function

of W 0
i ,W 1

i and`, since itsj-th bit depends on thej-th bit of W 0
i , thej-th bit of W 1

i and on the literal̀ .
Similarly, the keys that are used in the encryptions are 8-local functions, and the arguments to the encryption
are 6-local functions of(r,W).

We will now analyze the complexity of̂fn. The output complexity and randomness complexity off̂
are both dominated by the complexity of the gate labels. Generally, the complexity of these functions is
poly(|Cn| · k) (since the encryptionE is computable in polynomial time).12 However, when the circuitCn

has bounded fan-out (say 2) each invocation of the encryption usespoly(k) random bits and outputspoly(k)
bits. Hence, the overall complexity isO(|Cn|) · poly(k) = O(|Cn| · nε) for an arbitrary constantε > 0.
Since any circuit with unbounded fan-out of size|Cn| can be (efficiently) transformed into a bounded-fanout
circuit whose size isO(|Cn|) (at the price of a logarithmic factor in the depth), we get an encoding of size
O(|Cn| · nε) for every (unbounded fan-out) circuit family{Cn}.

Let µ(n), s(n) be the randomness complexity and the output complexity off̂n respectively. We claim
that the function familyf̂ = {f̂n : {0, 1}n × {0, 1}µ(n) → {0, 1}s(n)}n∈N defined above is indeed a
computationally randomized encoding of the familyf . We start with perfect correctness.

Lemma 4.8 (Perfect correctness)There exists a polynomial-time decoder algorithmB such that for every
n ∈ N and everyx ∈ {0, 1}n and(r,W) ∈ {0, 1}µ(n), it holds thatB(1n, f̂n(x, (r,W))) = fn(x).

Proof: Let α = f̂n(x, (r,W)) for somex ∈ {0, 1}n and(r,W) ∈ {0, 1}µ(n). Givenα, our decoder
computes, for every wirei, the active keyW bi

i and its color ci. Then, for an output wirei, the decoder
retrieves the maskri from α and computes the corresponding output bit offn(x); i.e., outputsbi = ci − ri.
(Recall that the masks of the output wires are given explicitly as part ofα.) Theactive keys and their colors
are computed by scanning the circuit from bottom to top.

For an input wirei the desired value,W bi
i ◦ ci, is given as part ofα. Next, consider a wirey that

goes out of a gatet, and assume that we have already computed the desired values of the input wiresi, j
of this gate. We use thecolorsci, cj of the active keys of the input wiresto select theactive labelQ

ci,cj

t

of the gatet (and ignore the other 3inactive labels of this gate). Consider this label as in Equation (4.1);
recall that this cipher was encrypted under the keyW

ci−ri,cj

i ⊕ W
cj−rj ,ci

j = W
bi,cj

i ⊕ W
bj ,ci

j . Since we

have already computed the valuesci, cj ,W
bi
i andW

bj

j , we can decrypt the labelQ
ci,cj

t (by applying the
decryption algorithmD). Hence, we canrecover the encryptedplaintext, that includes, in particular, the

valueW
g(bi,bj)
y ◦ (g(bi, bj) + ry), whereg is the function that gatet computes. Since by definitionby =

g(bi, bj), the decrypted string contains the desired value.

Remark 4.9 By the description of the decoder it follows that if the circuitCn is in NCi, then the decoder is
in NCi[D], whereD is the decryption algorithm. In particular ifD is in NCj then the decoder is inNCi+j .
This fact will be useful for some of the applications discussed in Section 5.

To argue computational privacy we need to prove the following lemma, whose proof is deferred to
Appendix A.

Lemma 4.10 (Computational privacy) There exists a probabilistic polynomial-time simulatorS, such that
for any family of strings{xn}n∈N, |xn| = n, it holds thatS(1n, fn(xn))

c≡ f̂n(xn, Uµ(n)).

12Specifically, the encryption is always invoked on messages whose length is bounded by`(n)
def
= O(|Cn| · k), hence we can use

`(n)-one-time symmetric encryption.

14

Remark 4.11 (Information-theoretic variant) Construction 4.7 can be instantiated with aperfect(information-
theoretic) encryption scheme, yielding a perfectly private randomized encoding. (The privacy proof given
in Appendix A can be easily modified to treat this case.) However, in such an encryption the key must be
as long as the encrypted message [Sha49]. It follows that the wires’key length grows exponentially with
their distance from the outputs, rendering the construction efficient only forNC1 circuits. This information-
theoretic variant of the garbled circuit construction was previously suggested in [IK02]. We will use it in
Section 4.3 for obtaining a computational encoding with a parallel decoder.

4.3 Main Results

Combining Lemmas 4.8, 4.10, and 4.5 we get anNC0 encoding of any efficiently computable function using
an oracle to a minimal PRG.

Theorem 4.12 Supposef is computed by a uniform family{Cn} of polynomial-size circuits. LetG be a
(minimal) PRG. Then,f admits a perfectly correct computational encodingf̂ in NC0[G]. The complexity
of f̂ is O(|Cn| · nε) (for an arbitrary constantε > 0).

We turn to the question of eliminating the PRG oracles. We follow the natural approach of replacing
each oracle with anNC0 implementation. (A more general but less direct approach will be described in
Remark 4.16.) Using [AIK04, Thm 6.5], a minimal PRG inNC0 is implied by a PRG inPREN , and in
particular by a PRG inNC1 or even⊕L/poly. Thus, we can base our main theorem on the following “easy
PRG” assumption.

Assumption 4.13 (Easy PRG (EPRG))There exists a PRG in⊕L/poly.

As discussed in Section 1.1, EPRG is a very mild assumption. In particular, it is implied by most
standard cryptographic intractability assumptions, and is also implied by the existence in⊕L/poly of one-
way permutations and other types of one-way functions.

Combining Theorem 4.12 with the EPRG assumption, we get a computational encoding inNC0 for
every efficiently computable function. To optimize its parameters we apply a final step of perfect encoding,
yielding a computational encoding with degree 3 and locality 4 (see Remark 3.6). Thus, we get the following
main theorem.

Theorem 4.14 Supposef is computed by a uniform family{Cn} of polynomial-size circuits. Then, under
the EPRG assumption,f admits a perfectly correct computational encodingf̂ of degree3, locality 4 and
complexityO(|Cn| · nε) (for an arbitrary constantε > 0).

Corollary 4.15 Under the EPRG assumption,CREN = BPP.

Proof: Let f(x) be a function inBPP. It follows that there exists a functionf ′(x, z) ∈ P such that for
everyx ∈ {0, 1}n it holds thatPrz[f ′(x, z) 6= f(x)] ≤ 2−n. Let f̂ ′((x, z), r) be theNC0 computational
encoding off ′ promised by Theorem 4.14. Sincef ′ is a statistical encoding off (the simulator and the
decoder are simply the identity functions), it follows from Lemma 3.5 thatf̂(x, (z, r)) def= f̂ ′((x, z), r) is a
computational encoding off in NC0.

Conversely, supposef ∈ CREN and letf̂ be anNC0 computational encoding off . A BPP algorithm
for f can be obtained by first computinĝy = f̂(x, r) on a randomr and then invoking the decoder on̂y to
obtain the outputy = f(x) with high probability.

15

Remark 4.16 (Relaxing the EPRG assumption)The EPRG assumption is equivalent to the existence of a
PRG inNC0 or inPREN . It is possible to base Theorem 4.14 on a seemingly more liberal assumption by
taking an alternative approach that does not rely on aperfectencoding. The idea is to first replace each PRG
oracle with an implementationG from some classC, and only then apply a (perfectly correct)statistical
encoding to the resultingNC0[G] circuit. Thus, we needG to be taken from a classC such thatNC0[C] ⊆
SREN . It follows from [IK02, AIK04] that the classNL/poly satisfies this property (and furthermore,
functions inNL/poly admit a statisticalNC0 encoding with perfect correctness). Thus, we can replace
⊕L/poly in the EPRG assumption withNL/poly. Another alternative is to assume the existence of a one-
time symmetric encryption(E, D) whose encrypting algorithmE is in SREN . According to [AIK04] the
last assumption is equivalent to the existence of one-time symmetric encryption (with negligible decryption
error) whose encryption algorithm is inNC0. Hence by plugging this scheme to Construction 4.7, we
obtain a computationally private,statistically correct randomized encoding inNC0 for any polynomial-
time computable function (and in particular derive Corollary 4.15). In fact, we can even obtain perfect
correctness (as in Theorem 4.14) by assuming the existence of one-time symmetric encryption inNL/poly
(which, using [IK02, AIK04], implies such an errorless scheme inNC0). Note that (PRG∈ ⊕L/poly) =⇒
(PRG∈ NL/poly) =⇒ (one-time encryption∈ NL/poly), while the converse implications are not known
to hold.

On the parallel complexity of the decoder. As we shall see in Section 5, it is sometimes useful to obtain
a computational encoding whose decoder is also parallelized. Recall that if the circuit computingf is an
NCi circuit and the decryption algorithm (used in the construction) is inNCj , we obtain a parallel decoder
in NCi+j (see Remark 4.9). Unfortunately, we cannot use the parallel symmetric encryption scheme of
Construction 4.3 for this purpose because of its sequential decryption.

We can get around this problem by strengthening the EPRG assumption. Suppose we have apolynomial-
stretchPRG inNC1. (This is implied by some standard cryptographic assumptions, see [NR04].) In such
a case, by Claim 4.6, we can obtain a one-time symmetric encryption scheme(E, D) (for messages of
a fixed polynomial length) in which bothE andD are inNC1. Our goal is to turn this into a scheme
(Ê, D̂) in which the encryption̂E is in NC0 and the decryption is still inNC1. We achieve this by applying
to (E,D) the encoding given by the information-theoretic variant of the garbled circuit construction (see
Remark 4.11 or [IK02]). That is,̂E is a (perfectly correct and private)NC0 encoding ofE, and D̂ is
obtained by composingD with the decoder of the information-theoretic garbled circuit. (The resulting
scheme(Ê, D̂) is still a secure encryption scheme, see [AIK04] or Lemma 5.2.) Since the symmetric
encryption(E′, D′) employed by the information-theoretic garbled circuit is inNC0, its decoder can be
implemented inNC1[D′] = NC1. Thus,D̂ is also inNC1 (asNC0[decoder] = NC1). Combining this
encryption scheme with Construction 4.7, we get a computational encoding of a functionf ∈ NCi with
encoding inNC0 and decoding inNCi+1. Assuming there exists a linear-stretch PRG inNC1, we can use
a similar argument to obtain anNC0 encoding forf whose decoding inNCi+2. (In this case we use the
linear-PRG part of Claim 4.6.) Summarizing, we have the following:

Claim 4.17 Suppose there exists a PRG with polynomial stretch (resp. linear stretch) inNC1. Then, every
functionf ∈ NCi admits a perfectly-correct computational encoding inNC0 whose decoder is inNCi+1

(resp.NCi+2).

16

5 Applications

5.1 Relaxed Assumptions for Cryptography inNC0

In [AIK04] it was shown that, under relatively mild assumptions, many cryptographic tasks can be imple-
mented inNC0. This was proved by arguing that: (1) the security of most primitives is inherited by their
statistical or perfect randomized encoding; and (2) statistical or perfect encodings can be obtained for func-
tions in relatively high complexity classes such asNC1, ⊕L/poly or NL/poly. Thus, if a primitiveP can
be computed in these classes, then it can also be computed inNC0.

In this work, we consider primitives whose security is also inherited by their computational encoding.
(In some cases we will need to rely on perfect correctness, which we get “for free” in our main construction.)
It follows from Theorem 4.14 that, under the EPRG assumption, any such primitiveP can be computed in
NC0 if it exists at all(i.e., can be computed in polynomial time).

Some primitives, such as collision resistant hash functions and one-way permutations, do not respect
computational encoding. However, many others do. These include public-key encryption, symmetric
encryption,13 commitments,14 signatures, message authentication schemes (MACs), and zero knowledge
proofs.15 (See [Gol01, Gol04] for detailed definitions of these cryptographic primitives.) In all these cases,
we can replace the sender (i.e., the encrypting party, committing party, signer or prover, according to the
case) with its computational encoding and let the receiver (the decrypting party or verifier) use the decoding
algorithm to translate the output of the new sender to an output of the original one. The security of the result-
ing scheme reduces to the security of the original one by using the efficient simulator. These reductions are
analogous to those given in [AIK04] for the case of statistical encoding. For completeness, we provide a full
treatment for encryption schemes and sketch the proofs for commitments, signatures, and zero-knowledge
proofs. We also show how to use the EPRG assumption to construct an instance-hiding scheme between an
NC0 user and aBPP-oracle.

Definition 5.1 (Public-key encryption)A secure public-key encryption scheme(PKE) is a triple(G,E,D)
of probabilistic polynomial-time algorithms satisfying the following conditions:

• Viability: On input1n the key generation algorithm,G, outputs a pair of keys(e, d). For every pair
(e, d) such that(e, d) ∈ G(1n), and for every plaintextx ∈ {0, 1}∗, the algorithmsE, D satisfy

Pr[D(d,E(e, x)) 6= x)] ≤ ε(n)

whereε(n) is a negligible function and the probability is taken over the internal coin tosses of algo-
rithmsE andD.

• Security: For every polynomial̀ (·), and every families of plaintexts{xn}n∈N and{x′n}n∈N where
xn, x′n ∈ {0, 1}`(n), it holds that

(e ←G1(1n), E(e, xn))
c≡ (e ←G1(1n), E(e, x′n)), (5.1)

whereG1(1n) denotes the first element in the pairG(1n).

13See Footnote 8.
14In this work we refer to computationally hiding commitments. Computational encoding does not respect the security of

statistically hiding commitments.
15In fact, computational randomized encoding also preserves the security of one-way functions. However, this fact has no

application in the current context since OWFs areNC0-reducible to PRGs.

17

The definition of aprivate-keyencryption scheme is similar, except that the public key is omitted from the
ensembles. That is, instead of Equation 5.1 we require thatE(G1(1n), xn)

c≡ E(G1(1n), x′n). An extension
to multiple-message security, where the indistinguishability requirement should hold for encryptions of
polynomially many messages, follows naturally (see [Gol04, chapter 5] for formal definitions). In the
public-key case, multiple-message security is implied by single-message security as defined above, whereas
in the private-key case it is a strictly stronger notion. In the following we explicitly address only the (single-
message) public-key case, but the treatment easily holds for the case of private-key encryption with multiple-
message security.

Lemma 5.2 Let E = (G, E, D) be a secure public-key encryption scheme, whereE(e, x, r) is viewed as
a polynomial-time computable function that encrypts the messagex using the keye and randomnessr.
Let Ê((e, x), (r, s)) = Ê((e, x, r), s) be acomputational randomized encoding ofE and letD̂(d, ŷ) def=
D(d,B(ŷ)) be the composition ofD with the decoderB of Ê. Then, the schemêE def= (G, Ê, D̂) is also a
secure public-key encryption scheme.

Proof: The uniformity of the encoding guarantees that the functionsÊ andD̂ can be efficiently computed.
The viability of Ê follows in a straightforward way from the correctness of the decoderB. Indeed, if(e, d)
are in the support ofG(1n), then for any plaintextx we have

Pr
r,s

[D̂(d, Ê(e, x, r, s)) 6= x] = Pr
r,s

[D(d,B(Ê(e, x, r, s))) 6= x]

≤ Pr
r,s

[B(Ê((e, x, r), s)) 6= E(e, x, r)] + Pr
r

[D(d, E(e, x, r)) 6= x]

≤ ε(n),

whereε(·) is negligible inn and the probabilities are also taken over the coin tosses ofD; the first inequality
follows from the union bound and the second from the viability ofE and the statistical correctness ofÊ.

We move on to prove the security of the construction. LetS be the efficient computational simulator
of Ê. Then, for every polynomial̀(·), and every families of plaintexts{xn}n∈N and {x′n}n∈N where
xn, x′n ∈ {0, 1}`(n), it holds that

(e ←G1(1n), Ê(e, xn, rn, sn))
c≡ (e ←G1(1n), S(E(e, xn, rn))) (by the privacy ofÊ and Fact 2.5)
c≡ (e ←G1(1n), S(E(e, x′n, rn))) (by the security ofE and Fact 2.3)
c≡ (e ←G1(1n), Ê(e, x′n, rn, sn)) (by the privacy ofÊ and Fact 2.5),

wherern andsn are uniformly chosen random strings of an appropriate length. Hence, the security ofÊ
follows from the transitivity of the relation

c≡ (Fact 2.1).

In particular, if the schemeE = (G,E, D) enables errorless decryption and the encodingÊ is per-
fectly correct, then the schemêE also enables errorless decryption. Additionally, the above lemma is easily
extended to case of private-key encryption with multiple-message security.

SIGNATURES. Let S = (G,S, V) be a signature scheme, whereG is a key-generation algorithm that
generates the signing and verification keys(s, v), the signing functionS(s, α, r) computes a signatureβ on
the documentα using the keys and randomnessr, and the verification algorithmV (v, α, β) verifies thatβ
is a valid signature onα using the verification keyv. The three algorithms run in probabilistic polynomial
time, and the scheme provides correct verification for legal signatures (ones that were produced by the
signing function using the corresponding signing key). The scheme is secure (unforgeable) if it is infeasible

18

to forge a signature in a chosen message attack. Specifically, any polynomial-time adversary that gets the
verification key and an oracle access to the signing processS(s, ·) fails (except with negligible probability)
to produce a valid signatureβ on a documentα (with respect to the corresponding verification keyv) for
which it has not requested a signature from the oracle.16

Let Ŝ be a computational randomized encoding ofS, and letV̂ (v, α, β̂) def= V (v, α, B(β̂)) be the com-
position ofV with the decoderB of the encodingŜ. We claim that the schemêS def= (G, Ŝ, V̂) is also a
signature scheme. The efficiency and correctness ofŜ follow from the uniformity of the encoding and its
correctness. To prove the security of the new scheme we use the simulator to transform an attack onŜ into
an attack onS. Specifically, given an adversarŷA that breaksŜ, we can breakS by invokingÂ and emu-
lating the oraclêS using the simulator of the encoding and the signature oracleS. By Fact 2.4 the output
of Â when interacting with the emulated oracle is computationally indistinguishable fromÂ’s output when
interacting with the actual signing oraclêS(s, ·). Moreover, if the forged signature(α, β̂) produced byÂ is
valid underŜ, then it is translated into a valid signature(α, β) underS by using the decoder, i.e.,β = B(β̂).
Hence, if the schemêS can be broken with non-negligible probability, then so does the schemeS. A similar
argument holds also in the private-key setting (i.e., in the case of MACs).

COMMITMENTS. A commitment scheme enables one party (a sender) to commit itself to a value while
keeping it secret from another party (the receiver). Later, the sender can reveal the committed value to the
receiver, and it is guaranteed that the revealed value is equal to the one determined at the commit stage. We
start with the simple case of a non-interactive commitment. Such a scheme can be defined by a polynomial-
time computable functionC(b, r) that outputs a commitmentc to the bitb using the randomnessr. We
assume, w.l.o.g., that the scheme has a canonical decommit stage in which the sender revealsb by sending
b andr to the receiver, who verifies thatC(b, r) is equal to the commitmentc. The scheme should be both
(computationally) hiding and (perfectly) binding. Hiding requires thatc = C(b, r) keepsb computation-
ally secret, that isC(0, Un)

c≡ C(1, Un). Binding means that it is impossible for the sender to open its
commitment in two different ways; that is, there are nor0 andr1 such thatC(0, r0) = C(1, r1).

Let Ĉ(b, r, s) be a perfectly-correct computationally-private encoding ofC(b, r). Then Ĉ defines a
computationally hiding perfectly binding, non-interactive commitment. Hiding follows from the privacy of
the encoding, as argued for the case of encryption in Lemma 5.2. Namely, it holds that

Ĉ(0, r, s)
c≡ S(C(0, r, s))

c≡ S(C(1, r, s))
c≡ Ĉ(1, r, s)

wherer ands are uniformly chosen strings of an appropriate length (the first and third transitions follow
from the privacy ofĈ and Fact 2.5, while the second transition follows from the hiding ofC and Fact 2.3).17

The binding property of̂C follows from the perfect correctness; namely, if there exists an ambiguous pair
(r0, r

′
0), (r1, r

′
1) such thatĈ(0, r0, s0) = Ĉ(1, r1, s1), then by perfect correctness it holds thatC(0, r0) =

C(1, r1) which contradicts the binding of the original scheme. So when the encoding is inNC0 we get a
commitment scheme whose sender is inNC0.

In fact, in contrast to the primitives described so far, here we also improve the parallel complexity at
the receiver’s end. Indeed, on inputĉ, b, r, s the receiver’s computation consists of computingĈ(b, r, s)
and comparing the result tôc. AssumingĈ is in NC0, the receiver can be implemented by anNC0 circuit
augmented with a single (unbounded fan-in) AND gate. We refer to this special type ofAC0 circuit as an

16When the signing algorithm is probabilistic, the attacker does not have an access to the random coin tosses of the signing
algorithm.

17The resulting scheme is computationally hiding even if the original scheme is unconditionally hiding. This is contrast with the
case of statistically-private encodings as discussed in [AIK04].

19

ANDn ◦NC0 circuit.18

While the existence of non-interactive commitment schemes is implied by the existence of a 1-1 OWF
([Blu83], [Gol01, Const. 4.4.2]), it is not known how to construct such a scheme based on arbitrary OWF
(or equivalently PRG). However, the existence of a OWF allows to construct aninteractivecommitment
scheme [Nao91]. In particular, the PRG based commitment scheme of [Nao91] has the following simple
form: First the receiver chooses a random stringr ∈ {0, 1}3n and sends it to the sender, then the sender
that wishes to commit to the bitb chooses a random strings ∈ {0, 1}n and sends the value of the function
C(b, r, s) to the receiver. (The exact definition of the functionC(b, r, s) is not important in our context.) To
decommit the sender sends the randomnesss and the bitb and the receiver accepts ifC(b, r, s) equals to
the message he had received in the commit phase. Computational hiding requires that for any choice ofr it
holds that(r, C(0, r, s))

c≡ (r, C(1, r, s)). Perfect binding requires that, except with negligible probability
(over the randomness of the receiverr), there are nos0 ands1 such thatC(0, r, s0) = C(1, r, s1).

Again, if we replaceC by a computationally-private perfectly-correct encodingĈ, we get a (constant-
round) interactive commitment scheme (this follows by combining the previous arguments with Fact 2.5).
Moreover, as in the non-interactive case, when the encoding is inNC0 the receiver’s computation in the
decommit phase is inANDn ◦NC0, and so, since the receiver’s computation in the commit phase is inNC0,
we get anANDn ◦ NC0 receiver. As an immediate application, we obtain a constant-round protocol for
coin flipping over the phone [Blu83] between anNC0 circuit and anANDn ◦ NC0 circuit under the EPRG
assumption.

ZERO-KNOWLEDGE PROOFS. We move on to the case of non-interactive zero knowledge proofs (NIZK).
Such proof systems are similar to standard zero-knowledge protocols except that interaction is traded for
the use of a public random stringσ to which both the prover and the verifier have a read-only access. More
formally, a NIZK (with an efficient prover) for anNP relationR(x,w) is a pair of probabilistic polynomial-
time algorithms(P, V) that satisfies the following properties:

• (Completeness) for every(x, w) ∈ R, it holds thatPr[V (x, σ, P (x,w, σ)) = 1] > 2
3 ;

• (Soundness) for everyx /∈ LR (i.e.,x such that∀w, (x,w) /∈ R) and every prover algorithmP ∗ we
have thatPr[V (x, σ, P ∗(x, σ)) = 1] < 1

3 ;

• (Zero-knowledge) there exists a probabilistic polynomial-time simulatorM such that for every string
sequence{(xn, wn)} where(xn, wn) ∈ R it holds that{(xn, σ, P (xn, wn, σ))} c≡ {M(xn)};

(where in all the aboveσ is uniformly distributed over{0, 1}poly(|x|)).
Similarly to the previous cases, we can compile the prover into its computational randomized encoding

P̂ , while the new verifier̂V uses the decoderB to translate the prover’s encoded messageŷ to the corre-
sponding message of the original prover, and then invokes the original verifier (i.e.,V̂ = V (x, σ,B(ŷ))).
The completeness and soundness of the new protocol follow from the correctness of the encoding. The
zero-knowledge property follows from the privacy of the encoding. That is, to simulate the new prover
we define a simulator̂M that invokes the simulatorM of the original scheme and then applies the simu-
lator S of the encoding to the third entry ofM ’s output. By Fact 2.5 and the privacy of̂P it holds that

18There is no commitment scheme in which the receiver’s computation is inNC0. Such a receiver decides whether to accept the
opening of the commitment according to a constant number of bits, and hence can guess these bits with constant probability which
allows him to open the commitment before the decommit phase. Thus, the locality of the function that the receiver computes has to
be super-logarithmic. Hence, anANDn ◦NC0 receiver can be considered as the best one can achieve.

20

(x, σ, P̂ (x, w, σ, r))
c≡ (x, σ, S(P (x,w, σ))) (wherer is the randomness of the encodingP̂) while Fact 2.3

ensures that(x, σ, S(P (x,w, σ)))
c≡ M̂(x).19

The above construction generalizes tointeractiveZK-proofs with an efficient prover. In this case, we
can encode the prover’s computation (viewed as a function of his input, theNP-witness he holds, his private
randomness and all the messages he has received so far), while the new receiver uses the decoder to translate
the messages and then invokes the original protocol. The resulting protocol is still computational ZK proof.
(The proof is similar to the case of NIZK above, but relies on Fact 2.4 instead of Fact 2.3.) The same
construction works for ZK arguments (in which the soundness holds only against computationally bounded
cheating prover).

INSTANCE HIDING . An instance hiding scheme (IHS) allows a powerful machine (an oracle) to help a more
limited user compute some functionf on the user’s inputx; the user wishes to keep his input private and so
he cannot just send it to the machine. We assume that the user is an algorithm from a low complexity class
WEAK whereas the oracle is from a higher complexity classSTRONG. In a (non-adaptive, single-oracle)
IHS the user first transforms his inputx into a (randomized) encrypted instancey = E(x, r) and then asks
the oracle to computez = g(y). The user should be able to recover the value off(x) from z by applying a
decryption algorithmD(x, r, z) (whereD ∈ WEAK) such thatD(x, r, g(E(x, r)) = f(x). The hiding of
the scheme requires thatE(x, r) keepsx secret, i.e., for every string families{xn} and{x′n} (where|xn| =
|x′n|), the ensemblesE(xn, r) andE(x′n, r) are indistinguishable with respect to functions inSTRONG.
The default setting of instance hiding considered in the literature refers to a probabilistic polynomial-time
user and a computationally unbounded machine. (See [Fei93] for a survey on IHS schemes.)

The notion of randomized encoding naturally gives rise to IHS in the following way: Givenf we define
a related functionh(x, r) = f(x)⊕ r (where|r| = |f(x)|). Let ĥ((x, r), s) be a randomized encoding ofh
whose decoder isB. Then, we defineE(x, (r, s)) = ĥ((x, r), s), g(y) = B(y) andD(x, r, z) = r⊕ z. The
correctness of the scheme follows from the correctness of the encoding. To prove the privacy note that, by
Fact 2.5, it holds that

ĥ(xn, r, s)
c≡ S(f(xn)⊕ r) ≡ S(f(yn)⊕ r)

c≡ ĥ(yn, r, s).

Hence, under the EPRG assumption, we can construct such a scheme whereWEAK = NC0 andSTRONG =
BPP (or P if perfect correctness is required).

We summarize some consequences of the EPRG assumption obtained so far.

Theorem 5.3 Suppose that the EPRG assumption holds. Then,

1. If there exists a public-key encryption scheme (resp., NIZK with an efficient prover or constant-round
ZK proof with an efficient prover for everyNP relation), then there exists such a scheme in which the
encryption (prover) algorithm is inNC0

4.

2. If there exists a non-interactive commitment scheme, then there exists such a scheme in which the
sender is inNC0

4 and the receiver is inANDn ◦NC0.

3. There exists a stateless symmetric encryption scheme (resp., digital signature, MAC, a constant-round
ZK argument for every language inNP) in which the encryption (signing, prover) algorithm is in
NC0

4.

19This transformation results in a computational ZK even if the original protocol was a statistical ZK proof system. Again, this
is contrasted with the transformations obtained by usingstatisticallyprivate randomized encoding described in [AIK04].

21

4. There exists a constant-round commitment scheme in which the sender is inNC0
4 and the receiver is

in ANDn ◦NC0.

5. For every polynomial-time computable function we have a (non-adaptive single-oracle) IHS in which
the user is inNC0

5 and the oracle is inBPP.

Note that the existence of (stateless) symmetric encryption, signature, MAC, constant-round commitment
scheme and constant-round ZK arguments forNP, does not require any additional assumption other than
EPRG. This is a consequence of the fact that they all can be constructed (in polynomial time) from a PRG
(see [Gol01, Gol04]). For these primitives, we obtain more general (unconditional) results in the next
subsection.

Theorem 5.3 reveals an interesting phenomenon. It appears that several cryptographic primitives (e.g.,
symmetric encryption schemes, digital signatures and MACs) can be implemented inNC0 despite the fact
that their standard constructions rely on pseudorandom functions (PRFs) [GGM86], which cannot be com-
puted even inAC0 [LMN93]. For such primitives, we actually construct a sequential PRF from the PRG
(as in [GGM86]), use it as a building block to obtain a sequential construction of the desired primitive (e.g.,
symmetric encryption), and finally reduce the parallel-time complexity of the resulting function using our
machinery. Of course, the security of the PRF primitive itself is not inherited by its computational (or even
perfect) encoding.

Parallelizing the receiver. As mentioned above, the computational encoding promised by Theorem 4.14
does not support parallel decoding. Thus, we get primitives in which the sender is inNC0 but the receiver is
not known to be inNC, even if we started with a primitive that has anNC receiver. The following theorem
tries to partially remedy this state of affairs. Assuming the existence of a PRG with a good stretch inNC1,
we can rely on Claim 4.17 to convert sender-receiver schemes in which both the receiver and the sender are
in NC to ones in which the sender is inNC0 and the receiver is still inNC.20

Theorem 5.4 LetX = (G,S,R) be a sender-receiver cryptographic scheme whose security is respected by
computational encoding (e.g., encryption, signature, MAC, commitment scheme, NIZK), whereG is a key-
generation algorithm (in case the scheme has one),S ∈ NCs is the algorithm of the sender andR ∈ NCr

is the algorithm of the receiver. Then,

• If there exists a polynomial-stretch PRG inNC1, then there exists a similar schemêX = (G, Ŝ, R̂) in
whichŜ ∈ NC0 andR̂ ∈ NCmax{s+1,r}.

• If there exists a linear-stretch PRG inNC1, then there exists a a similar schemêX = (G, Ŝ, R̂), in
whichŜ ∈ NC0 andR̂ ∈ NCmax{s+2,r}.

Proof: If there exists a polynomial-stretch (resp. linear-stretch) PRG inNC1, then we can use Claim 4.17
and get a computational encodingŜ for S in NC0 whose decoderB is in NCs+1 (resp.NCs+2). As usual,
the new receiver̂R usesB to decode the encoding, and then applies the original receiverR to the result.
Thus,R̂ is in NCmax{s+1,r} (resp.NCmax{s+2,r}).

20Similarly, assuming a linear-stretch PRG inNC1, we can obtain, for everyNC function, a (non-adaptive single-oracle) IHS in
which the user is inNC0 and the oracle is inNC.

22

5.2 Parallel Reductions between Cryptographic Primitives

In the previous section we showed that many cryptographic tasks can be performed inNC0 if they can be
performed at all, relying on the assumption that an easy PRG exists. Although EPRG is a very reasonable
assumption, it is natural to ask what types of parallel reductions between primitives can be guaranteed
unconditionally. In particular, such reductions would have consequences even if there exists a PRG in, say,
NC4.

In this section, we consider the types of unconditional reductions that can be obtained using the machin-
ery of Section 4. We focus on primitives that can be reduced to a PRG (equivalently, using [HILL99], to a
one-way function). We argue that for any such primitiveF , its polynomial-time reduction to a PRG can be
collapsed into anNC0-reduction to a PRG. More specifically, we present an efficient “compiler” that takes
the code of an arbitrary PRGG and outputs a description of anNC0 circuit C, having oracle access to a
functionG′, such that for any (minimal) PRGG′ the circuitC[G′] implementsF .

A compiler as above proceeds as follows. Given the code ofG, it first constructs a code for an efficient
implementationf of F . (In case we are given an efficientblack-boxreduction fromF to a PRG, this code is
obtained by plugging the code ofG into this reduction.) Then, applying a constructive form of Theorem 4.12
to the code off , the compiler obtains a codêf of anNC0 circuit which implementsF by making an oracle
access to a PRG. This code off̂ defines the requiredNC0 reduction fromF to a PRG, whose specification
depends on the code of the given PRGG. Thus, the reduction makes anon-black-boxuse of the PRG
primitive, even if the polynomial-time reduction it is based on is fully black-box.

Based on the above we can obtain the following informal “meta-theorem”:

Meta-Theorem 5.5 LetF be a cryptographic primitive whose security is respected by computational en-
coding. Suppose thatF is polynomial-time reducible to a PRG. Then,F is NC0-reducible to a (minimal)
PRG.

Since a minimal PRG can be reduced inNC0 to one-way permutations ormore general types of one-
way functions (see [HILL99, HHR05] and [AIK04, Remark 6.6]), the minimal PRG in the conclusion of the
above theorem can be replaced by these primitives.

InstantiatingF by concrete primitives, we get the following corollary:

Corollary 5.6 LetG be a PRG. Then,

• There exists a stateless symmetric encryption scheme (resp., digital signature or MAC) in which the
encryption (signing) algorithm is inNC0[G].

• There exists a constant-round commitment scheme (resp., constant-round coin-flipping protocol) in
which the sender (first party) is inNC0[G] and the receiver (second party) is inANDn ◦NC0[G].

• For everyNP language, there exists a constant-round ZK argument in which the prover is inNC0[G].

Note that items 3,4 of Theorem 5.3 can be derived from the above corollary, up to the exact locality.
The above results can be used to improve the parallel complexity of some known reductions. For ex-

ample, Naor [Nao91] shows a commitment scheme in which the sender is inNC0[LG], whereLG is a
linear-stretchPRG. By using his construction, we derive a commitment scheme in which the sender (re-
spectively, the receiver) is inNC0[G] (respectively,ANDn ◦ NC0[G]) whereG is aminimalPRG. Since it
is not known how to reduce a linear-stretch PRG to a minimal PRG even inNC, we get a nontrivial parallel
reduction.

23

Other interesting examples arise in the case of primitives that are based on PRFs, such as MACs, sym-
metric encryption, and identification (see [GGM86, NR99, Gol04] for these and other applications of PRFs).
Since the known construction of a PRF from a PRG is sequential [GGM86], it was not known how to
reduce these primitives in parallel to (even a polynomial-stretch) PRG. This fact motivated the study of
parallel constructions of PRFs in [NR99, NR04]. In particular, Naor and Reingold [NR99] introduce a
new cryptographic primitive called a synthesizer (SYNTH), and show that PRFs can be implemented in
NC1[SYNTH]. This gives anNC1-reduction from cryptographic primitives such as symmetric encryption
to synthesizers. By Corollary 5.6, we get that these primitives are in factNC0-reducible to a PRG. Since
(even a polynomial-stretch) PRG can be implemented inNC0[SYNTH] while synthesizers are not known
to be even inNC[PRG], our results improve both the complexity of the reduction and the underlying as-
sumption. It should be noted, however, that our reduction only improves the parallel-time complexity of the
encrypting party, while the constructions of [NR99] yieldNC1-reductions on both ends.

In contrast to the above, we show that a synthesizer inNCi can be used to implement encryption inNCi

with decryption inNC.21 First, we use [NR99] to construct an encryption scheme(E, D) and a polynomial-
stretch PRGG such thatE andD are inNC1[SYNTH] = NCi+1 andG is in NC0[SYNTH] = NCi.
Next, by Claim 4.6 and Remark 4.9, we obtain anNC0[G] = NCi computational encodinĝE for E whose
decoderB is in NC2i. (We first use Claim 4.6 to construct one-time symmetric encryption(OE,OD)
such thatOE andOD are inNC0[G] = NCi. Then, we encodeE by pluggingOE into Construction 4.7
and obtain anNC0[OE] = NCi computational encodinĝE for E. By Remark 4.9 the decoderB of Ê
is in NCi[OD] = NC2i.) To decrypt ciphers of̂E we invoke the decoderB, and then apply the original
decryption algorithmD to the result. Therefore, the decryption algorithm of our new schemeD̂ is in
NCmax(2i,i+1).

5.3 Secure Multi-Party Computation

Secure multi-party computation (MPC) allows several parties to evaluate a function of their inputs in a
distributed way, so that both the privacy of their inputs and the correctness of the outputs are maintained.
These properties should hold, to the extent possible, even in the presence of an adversary who may corrupt
at mostt parties. This is typically formalized by comparing the adversary’s interaction with thereal process,
in which the uncorrupted parties run the specified protocol on their inputs, with an ideal function evaluation
process in which a trusted party is employed. The protocol is said to besecureif whatever the adversary
“achieves” in the real process it could have also achieved by corrupting the ideal process. A bit more
precisely, it is required that for every adversaryA interacting with the real process there is an adversaryA′

interacting with the ideal process, such that outputs of these two interactions areindistinguishablefrom the
point of view of an external environment. See, e.g., [Can00, Can01, Gol04], for more detailed and concrete
definitions.

There is a variety of different models for secure computation. These models differ in the power of the
adversary, the network structure, and the type of “environment” that tries to distinguish between the real
process and the ideal process. In theinformation-theoreticsetting, both the adversary and the distinguish-
ing environment may be computationally unbounded, whereas in thecomputationalsetting they are both
bounded to probabilistic polynomial time.

The notion of randomizing polynomials was originally motivated by the goal of minimizing the round
complexity of MPC. The motivating observation of [IK00] was that the round complexity of most general

21For concreteness, we refer here only to the case of symmetric encryption, the case of other primitives which areNC0-reducible
to PRF (such as identification schemes and MACs) is analogous.

24

protocols from the literature (e.g., those of [GMW87, BGW88, CCD88]) is related to the algebraicdegree
of the function being computed. Thus, by reducing the task of securely computingf to that of securely
computing some related low-degree function, one can obtain round-efficient protocols forf .

Randomizing polynomials (or low-degree randomized encodings) provide precisely this type of reduc-
tion. More specifically, suppose that the inputx to f is distributed between the parties, who wish to all
learn the outputf(x). If f is represented by a vector̂f(x, r) of degree-d randomizing polynomials, then
the secure computation off can benon-interactivelyreduced to that of̂f , where the latter is viewed as
a randomizedfunction of x. This reduction only requires each party to invoke the decoder off̂ on its
local output, obtaining the corresponding output off . The secure computation of̂f , in turn, can be non-
interactively reduced to that of a relateddeterministicfunction f̂ ′ of the same degreed. The idea is to let
f̂ ′(x, r1, . . . , rt+1) def= p(x, r1 ⊕ . . .⊕ rt+1) (wheret is a bound on the number of corrupted parties), assign
each input vectorrj to a distinct player, and instruct it to pick it at random. (See [IK00] for more details.)
This second reduction step is also non-interactive. Thus, any secure protocol forf̂ ′ or f̂ gives rise to a
secure protocol forf with the same number of rounds. The non-interactive nature of the reduction makes it
insensitive to almost all aspects of the security model.

Previous constructions of (perfect or statistical) randomizing polynomials [IK00, IK02, CFIK03] pro-
vided information-theoreticreductions of the type discussed above. In particular, if the protocol used for
evaluatingf̂ ′ is information-theoretically secure, then so is the resulting protocol forf . The main limitation
of these previous reductions is that they efficiently apply only to restricted classes of functions, typically
related to different log-space classes. This situation is remedied in the current work, where we obtain (under
the EPRG assumption) ageneralsecure reduction from a functionf to a related degree-3 function̂f ′. The
main price we pay is that the security of the reduction is no longer information-theoretic. Thus, even if the
underlying protocol for̂f ′ is secure in the information-theoretic sense, the resulting protocol forf will only
be computationally secure.

To formulate the above we need the following definitions.

Definition 5.7 (Secure computation)Let f(x1, . . . , xn) be anm-party functionality, i.e., a (possibly ran-
domized) mapping fromm inputs of equal length intom outputs. Letπ be anm-party protocol. We formulate
the requirement thatπ securely computesf by comparing the following “real process” and “ideal process”.

The real process. A t-boundedadversaryA attacking thereal processis a probabilistic polynomial-time
algorithm, who may corrupt up tot parties and observe all of their internal data. At the end of the inter-
action, the adversary may output an arbitrary function of its view, which consists of the inputs, the random
coin tosses, and the incoming messages of the corrupted parties. We distinguish betweenpassivevs. active
adversaries and betweenadaptivevs.non-adaptiveadversaries. If the adversary is active, it has full control
over the messages sent by the corrupted parties, whereas if it is passive, it follows the protocol’s instruc-
tions (but may try to deduce information by performing computations on observed data). When the set of
corrupted parties has to be chosen in advance, we say that the adversary is non-adaptive, and otherwise say
that it is adaptive. Given anm-tuple of inputs(x1, . . . , xm) ∈ ({0, 1}n)m, theoutput of the real processis
defined as the random variable containing theconcatenationof the adversary’s output with the outputs and
identities of the uncorrupted parties. We denote this output byREALπ,A(x1, . . . , xm).

The ideal process. In the ideal process, an incorruptible trusted party is employed for computing the
given functionality. That is, the “protocol” in the ideal process instructs each party to send its input to the
trusted party, who computes the functionalityf and sends to each party its output. The interaction of a

25

t-bounded adversaryA′ with the ideal process and the output of the ideal process are defined analogously
to the above definitions for the real process. The adversary attacking the ideal process will also be referred
to as asimulator. We denote the output of the ideal process on the inputs(x1, . . . , xm) ∈ ({0, 1}n)m by
IDEALf,A′(x1, . . . , xm).

The protocolπ is said tot-securelyrealize the given functionalityf with respect to a specified type
of adversary (namely, passive or active, adaptive or non-adaptive) if for any probabilistic polynomial-time
t-bounded adversaryA attacking the real process, there exists a probabilistic polynomial-timet-bounded
simulator A′ attacking the ideal process, such that for any sequence ofm-tuples{x̄n} such thatx̄n ∈
({0, 1}n)m, it holds thatREALπ,A(x̄n)

c≡ IDEALf,S(x̄n).

Secure reductions. To define secure reductions, consider the followinghybridmodel. Anm-party proto-
col augmented with an oracle to them-party functionalityg is a standard protocol in which the parties are
allowed to invokeg, i.e., a trusted party to which they can securely send inputs and receive the corresponding
outputs. The notion oft-security generalizes to protocols augmented with an oracle in the natural way.

Definition 5.8 Let f and g be m-party functionalities. At-securereduction fromf to g is an m-party
protocol that given an oracle access to the functionalityg, t-securely realizes the functionalityf (with
respect to a specified type of adversary). We say that the reduction isnon-interactiveif it involves a single
call to f (and possibly local computations on inputs and outputs), but no further communication.

Appropriate composition theorems, (e.g. [Gol04, Thms. 7.3.3, 7.4.3]), guarantee that the call tog can be
replaced by any secure protocol realizingg, without violating the security of the high-level protocol forf .22

Using the above terminology, Theorem 4.14 has the following corollary.

Theorem 5.9 Suppose the EPRG assumption holds. Letf(x1, . . . , xm) be anm-party functionality com-
puted by a (uniform) circuit family of sizes(n). Then, for anyε > 0, there is a non-interactive, computa-
tionally (m− 1)-secure reduction fromf to either of the following two efficient functionalities:

• A randomized functionalitŷf(x1, . . . , xm) of degree 3 (overGF(2)) with a random input and output
of lengthO(s(n) · nε) each;

• A deterministic functionalitŷf ′(x′1, . . . , x
′
m) of degree 3 (overGF(2)) with input lengthO(m · s(n) ·

nε) and output lengthO(s(n) · nε).

Both reductions are non-interactive in the sense that they involve a single call tof̂ or f̂ ′ and no further
interaction. They both apply regardless of whether the adversary is passive or active, adaptive or non-
adaptive.

Proof: The second item follows from the first via standard (non-interactive, degree-preserving) secure
reduction from randomized functionalities to deterministic functionalities (see [Gol04, Prop. 7.3.4]). Thus
we will only prove the first item. Assume, without loss of generality, thatf is a deterministic functionality
that returns the same output to all the parties.23 Let f̂(x, r) be the computational encoding off(x) promised

22Actually, for the composition theorem to go through, Definition 5.7 should be augmented by providing players and adversaries
with auxiliary inputs. We ignore this technicality here, and note that the results in this section apply (with essentially the same
proofs) to the augmented model as well.

23To handle randomized functionalities we use the non-interactive secure reduction mentioned above. Now, we can(m − 1)-
securely reducef to a single-output functionality by letting each party to mask its outputfi with a private randomness. That is,
f ′((x1, r1) . . . , (xm, rm)) = ((f1(x1)⊕r1)◦ . . .◦(f1(xm)⊕rm)). As both reductions are non-interactive the resulting reduction
is also non-interactive. Moreover, the circuit size off ′ is linear in the size of the circuit that computes the original function.

26

by Theorem 4.14. (Recall that̂f is indeed a degree 3 function havingO(s(n) · nε) random inputs and
outputs.) The following protocol(m − 1)-securely reduces the computation off(x) to f̂(x, r) (wheref̂ is
viewed as a randomized functionality whose randomness isr).

• Inputs: Partyi gets inputxi ∈ {0, 1}n.

• Partyi invokes the (randomized) oraclêf with queryxi, and receives an outputŷ.

• Outputs: Each party locally applies the decoderB of the encoding to the answerŷ received from the
oracle, and outputs the result.

We start by showing that the reduction is(m− 1)-secure against a passive non-adaptive adversary. Let
A be such an adversary that attacks some setI ⊂ [m] of the players. Then, the output of the real process
is (A(xI , f̂(x, r)), B(f̂(x, r)), Ī) wherexI = (xi)i∈I , Ī

def= [m] \ I andr is a uniformly chosen string of
an appropriate length. We define a (passive non-adaptive) simulatorA′ that attacks the ideal process in the
natural way: that is,A′(xI , y) = A(xI , S(y)), wherey is the answer received from the trusted party (i.e.,
f(x)) andS is the computationally private simulator of the encoding. Thus, the output of the ideal process
is (A′(xI , f(x)), f(x), Ī). By the definition ofA′, the privacy of the encodinĝf and Fact 2.3, we have,

IDEAL(x) ≡ (A(xI , S(f(x))), f(x), Ī)
c≡ (A(xI , f̂(x, r)), B(f̂(x, r)), Ī) ≡ REAL(x),

which finishes the proof.
We now sketch the security proof for the case of an adversaryA which is both adaptive and active. (The

non-adaptive active case as well as the adaptive passive case are treated similarly.) An attack byA has the
following form: (1) Before calling the oraclêf , in each stepA may decide (according to his current view)
to corrupt some partyi and learn its inputxi. (2) When the oraclêf is invokedA changes the input of each
corrupted partyi to some valuex′i, which is handed to thêf oracle. (3) After the parties call the oracle
on some (partially corrupted) inputx′ = (x′I , xĪ), the oracle returns a randomized encodingf̂(x′) to the
adversary, and nowA may adaptively corrupt additional parties. Finally,A outputs some function of its
entire view. For every such adversary we construct a simulatorA′ that attacks the ideal process by invoking
A and emulating his interaction with the real process. Namely, (1) Before the call to the trusted party we
let A choose (in each step) which party to corrupt and feed it with the input we learn; (2) When the trusted
party is invoked we letA pick x′I according to its current view and send thesex′I to thef oracle; (3) Given
the resulty = f(x′I , xĪ) returned by the oracle, we invoke the simulator (of the encoding) ony and feed the
result toA. Finally, we letA pick new corrupted players as in step (1). We claim that in each step of the
protocol the view ofA when interacting with the real process is computationally indistinguishable from the
view of A when it is invoked byA′ in the ideal process. (In fact, before the call to the oracle these views are
identically distributed.) Hence, the outputs of the two processes are also computationally indistinguishable.

A high-level corollary of Theorem 5.9 is that computing arbitrary polynomial-time computable func-
tionalities is as easy as computing degree-3 functionalities. Thus, when designing new MPC protocols, it
suffices to consider degree-3 functionalities which are often easier to handle.

More concretely, Theorem 5.9 gives rise to new, conceptually simpler, constant-round protocols for
general functionalities. For instance, a combination of this result with the “BGW protocol” [BGW88]
gives a simpler alternative to the constant-round protocol of Beaver, Micali, and Rogaway [BMR90]. The
resulting protocol will be more round-efficient, and in some cases (depending on the number of parties
and the “easiness” of the PRG) even more communication-efficient than the protocol of [BMR90]. On the

27

downside, Theorem 5.9 relies on a stronger assumption than the protocol from [BMR90] (an easy PRG vs.
an arbitrary PRG).

An interesting open question, which is motivated mainly from the point of view of the MPC application,
is to come up with an “arithmetic” variant of the construction. That is, given an arithmetic circuitC, say with
addition and multiplication gates, construct a vector of computationally private randomizing polynomials of
sizepoly(|C|) which makes ablack-boxuse of the underlying field. The latter requirement means that the
same polynomials should representC over any field, ruling out the option of simulating arithmetic field
operations by boolean operations. Such a result is known for weaker arithmetic models such as formulas
and branching programs (see [CFIK03]).

Acknowledgment. We thank Omer Reingold for helpful discussions.

References

[AIK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography inNC0. SIAM J. Comput.To appear.
Preliminary version in FOCS 04.

[Blu83] M. Blum. Coin flipping by telephone: a protocol for solving impossible problems.SIGACT
News, 15(1):23–27, 1983.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random
bits. SIAM J. Comput., 13:850–864, 1984. Preliminary version in FOCS 82.

[BMR90] D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure protocols (extended
abstract). InProc. of 22nd STOC, pages 503–513, 1990.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. InProc. of 20th STOC, pages 1–10, 1988.

[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols.J. Cryptology,
13(1):143–202, 2000.

[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
Proc. 42nd FOCS, pages 136–145, 2001.

[CCD88] D. Chaum, C. Cŕepeau, and I. Damgård. Multiparty unconditionally secure protocols (extended
abstract). InProc. of 20th STOC, pages 11–19, 1988.

[CFIK03] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient multi-party computation over rings. In
Proc. EUROCRYPT ’03, pages 596–613, 2003.

[Fei93] J. Feigenbaum. Locally random reductions in interactive complexity theory. InAdvances in
Computational Complexity Theory, volume 13 ofDIMACS Series on Discrete Mathematics and
Theoretical Computer Science, pages pp. 73–98, 1993.

[GGM86] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions.J. of the ACM.,
33:792–807, 1986.

28

[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. InProc. 21st STOC,
pages 25–32, 1989.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption.JCSS, 28(2):270–299, 1984. Preliminary
version in Proc. STOC ’82.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract).
In Proc. of 19th STOC, pages 218–229, 1987.

[Gol01] O. Goldreich.Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

[Gol04] O. Goldreich.Foundations of Cryptography: Basic Applications. Cambridge University Press,
2004.

[HHR05] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate.Electronic
Colloquium on Computational Complexity (ECCC), (135), 2005.

[HILL99] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function.SIAM J. Comput., 28(4):1364–1396, 1999.

[IK00] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with applications
to round-efficient secure computation. InProc. 41st FOCS, pages 294–304, 2000.

[IK02] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect randomizing
polynomials. InProc. 29th ICALP, pages 244–256, 2002.

[LMN93] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits, fourier transform, and learnability.
J. ACM, 40(3):607–620, 1993. Preliminary version in Proc. 30th FOCS, 1989.

[LP04] Y. Lindell and B. Pinkas. A proof of yao’s protocol for secure two-party computation.Electronic
Colloquium on Computational Complexity, 11(063), 2004.

[Nao91] M. Naor. Bit commitment using pseudorandomness.J. of Cryptology, 4:151–158, 1991.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and mechanism design. InProc.
1st ACM Conference on Electronic Commerce, pages 129–139, 1999.

[NR99] M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of
pseudo-random functions.J. of Computer and Systems Sciences, 58(2):336–375, 1999.

[NR04] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random functions.
J. ACM, 51(2):231–262, 2004. Preliminary version in Proc. 38th FOCS, 1997.

[Rog91] P. Rogaway.The Round Complexity of Secure Protocols.PhD thesis, MIT, June 1991.

[RTV04] O. Reingold, L. Trevisan, and S. Vadhan. Notions of reducibility between cryptographic primi-
tives. InTCC ’04, volume 2951 ofLNCS, pages 1–20, 2004.

[Sha49] C. E. Shannon. Communication theory of secrecy systems.Bell System Technical Journal, 28-
4:656–715, 1949.

29

[TX03] S. R. Tate and K. Xu. On garbled circuits and constant round secure function evaluation. CoPS
Lab Technical Report 2003-02, University of North Texas, 2003.

[Vio05] E. Viola. On constructing parallel pseudorandom generators from one-way functions. InProc.
20th Conference on Computational Complexity (CCC), pages 183– 197, 2005.

[Wig94] A. Wigderson.NL/poly ⊆ ⊕L/poly. In Proc. 9th Structure in Complexity Theory Conference,
pages 59–62, 1994.

[Yao82] A. C. Yao. Theory and application of trapdoor functions. InProc. 23rd FOCS, pages 80–91,
1982.

[Yao86] A. C. Yao. How to generate and exchange secrets. InProc. 27th FOCS, pages 162–167, 1986.

A Proof of Lemma 4.10

The simulator. We start with the description of the simulatorS. Given 1n andfn(x), for somex ∈
{0, 1}n, the simulator chooses, for every wirei of the circuitCn, an active key and a color; namely,S
selects a random stringW bi

i of length2k(n), and a random bitci. (Recall thatbi denotes the value of the
i-th wire induced by the inputx. The simulator, of course, does not know this value.) For an input wirei,
the simulator outputsW bi

i ◦ ci. For a gatet with input wiresi, j and output wiresy1, . . . , ym the simulator

computes theactive labelQ
ci,cj

t = E
W

bi,cj
i ⊕W

bj ,ci
j

(W by1
y1 ◦ cy1 ◦ . . . ◦W

bym
ym ◦ cym) and sets the other three

inactive labels of this gate to be encryptions of all-zeros strings of appropriate length under random keys;
that is, for every two bits(ai, aj) 6= (ci, cj), the simulator chooses uniformly ak(n)-bit stringRai,aj and

outputsQ
ai,aj

l = ERai,aj
(0|W

by1
y1

◦cy1◦...◦W
bym
ym ◦cym |). Finally, for an output wirei, the simulator outputs

ri = ci − bi (recall thatbi is known sincefn(x) is given).
SinceCn can be constructed in polynomial time and since the encryption algorithm runs in polynomial

time the simulator is also a polynomial-time algorithm. We refer to the gate labels constructed by the
simulator as “fake” gate labels and to gate labels off̂n as “real” gate labels.

Assume, towards a contradiction, that there exists a (non-uniform) polynomial-size circuit family{An},
a polynomialp(·), a string family{xn}, |xn| = n, such that for infinitely manyn’s it holds that

∆(n) def= |Pr[An(S(1n, fn(xn))) = 1]− Pr[An(f̂n(xn, Uµ(n))) = 1]| > 1
p(n)

.

We use a hybrid argument to show that such a distinguisher can be used to break the encryption hence
deriving a contradiction.

From now on we fixn and letk = k(n). We construct a sequence of hybrid distributions that depend on
xn, and mix “real” gates labels and “fake” ones, such that one endpoint corresponds to the simulated output
(in which all the gates have “fake” labels) and the other endpoint corresponds tof̂n(xn, Uµ(n)) (in which all
the gates have real labels). Hence, if the extreme hybrids can be efficiently distinguished then there must be
two neighboring hybrids that can be efficiently distinguished.

The hybrids Hn
t . First, we order the gates ofCn in topological order. That is, if the gatet uses the output

of gatet′, thent′ < t. Now, for everyt = 0, . . . ,Γ(n), we define the hybrid algorithmHn
t that constructs

“fake” labels for the firstt gates and “real” labels for the rest of the gates:

30

1. For every wirei uniformly choose two2k-bit stringsW bi
i ,W 1−bi

i and a random bitci.

2. For every input wirei outputW bi
i ◦ ci.

3. For every gatet′ ≤ t with input wiresi, j and output wiresy1, . . . , ym output

Q
ci,cj

t′ = E
W

bi,cj
i ⊕W

bj ,ci
j

(W by1
y1 ◦ cy1 ◦ . . . ◦W

bym
ym ◦ cym),

and for every choice of(ai, aj) ∈ {0, 1}2 that is different from(ci, cj), uniformly choose ak-bit

stringRai,aj and outputQ
ai,aj

t′ = ERai,aj
(0|W

by1
y1

◦cy1◦...◦W
bym
ym ◦cym |).

4. For every gatet′ > t, let g be the function thatt′ computes (AND or OR), leti, j be the input wires
of t′ and lety1, . . . , ym be its output wires. Usexn to compute the value ofbi(xn), bj(xn), and set
ri = ci − bi andrj = cj − bj . For every choice of(ai, aj) ∈ {0, 1}2, computeQ

ai,aj

t′ exactly as in
Equation 4.1, and output it.

5. For every output wirei computebi and outputri = ci − bi.

Claim A.1 There exist some0 ≤ t ≤ Γ(n) − 1 such thatAn distinguishes betweenHn
t and Hn

t+1 with

advantage∆(n)
Γ(n) .

Proof: First, note thatHn
t uses the stringxn only when constructing real labels, that is in Step 4.

Steps 1–3 can be performed without any knowledge onxn, and Step 5 requires only the knowledge of
fn(xn). Obviously, the algorithmHn

Γ(n) is just a different description of the simulatorS, and therefore
S(1n, fn(xn)) ≡ Hn

Γ(n). We also claim that the second extreme hybrid,Hn
0 coincides with the distribution

of the “real” encoding,f̂n(xn, Uµ(n)). To see this note that (1) the stringsW 0
i ,W 1

i are chosen uniformly

and independently byHn
0 , as they are in̂fn(xn, Uµ(n)); and (2) sinceHn

0 chooses theci’s uniformly and
independently and setsri = ci − bi then theri’s themselves are also distributed uniformly and indepen-
dently exactly as they are in̂fn(xn, Uµ(n)). Since for every gatet the value ofQ

ai,aj

t is a function of

the random variables, and since it is computed byHn
0 in the same way as in̂fn(xn, Uµ(n)), we get that

Hn
0 ≡ f̂n(xn, Uµ(n)).

Hence, we can write

∆(n) = |Pr[An(Hn
0) = 1]− Pr[An(Hn

Γ(n)) = 1]| ≤
Γ(n)−1∑

t=0

|Pr[An(Hn
t) = 1]− Pr[An(Hn

t+1) = 1]|,

and so there exists some0 ≤ t ≤ Γ(n)−1 such thatAn distinguishes betweenHn
t andHn

t+1 with advantage
∆(n)
Γ(n) .

We now show that distinguishingHn
t andHn

t+1 allows to distinguish whether a single gate is real or
fake. To do this, we define two random experimentsPn(0) andPn(1), that produce a real gate and a fake
gate, correspondingly.

31

The experimentsPn(0), Pn(1). Let i, j be the input wires of the gatet, lety1, . . . , ym be the output wires
of t, let g be the function that gatet computes, and letbi, bj , by1 , . . . , bym be the values of the corresponding
wires induced by the inputxn. Forσ ∈ {0, 1}, define the distributionPn(σ) as the output distribution of the
following random process:

• Uniformly choose the2k-bit stringsW bi
i ,W 1−bi

i ,W
bj

j ,W
1−bj

j ,W
by1
y1 , W

1−by1
y1 , . . . , W

bym
ym ,W

1−bym
ym ,

and the random bitsci, cj , cy1 , . . . , cym .

• If σ = 0 then setQ
ci,cj

t and the other threeQ
ai,aj

t exactly as in Step 3 ofHn
t .

• If σ = 1 then setQ
ai,aj

t exactly as in Step 4 ofHn
t ; that is, setri = ci − bi, rj = cj − bj , and for

every choice of(ai, aj) ∈ {0, 1}2, let

Q
ai,aj

t = E
W

ai−ri,aj
i ⊕W

aj−rj ,ai
j

(
W

g(ai−ri,aj−rj)
y1 ◦ (g(ai − ri, aj − rj) + ry1) ◦ . . .

◦W
g(ai−ri,aj−rj)
ym ◦ (g(ai − ri, aj − rj) + rym)

)
.

• Output(W bi
i ,W

bj

j ,W
by1
y1 ,W

1−by1
y1 , . . . , W

bym
ym , W

1−bym
ym , ci, cj , cy1 , . . . , cym , Q0,0

t , Q0,1
t , Q1,0

t , Q1,1
t).

Claim A.2 There exist a polynomial size circuitA′n that distinguishes betweenPn(0) andPn(1) with ad-

vantage∆(n)
Γ(n) .

Proof: The adversaryA′n uses the output ofPn(σ) to construct one of the hybridsHn
t andHn

t+1, and then
usesAn to distinguish between them. Namely, given the output ofPn, the distinguisherA′n invokes the al-

gorithmHn
t where the values of(W bi

i ,W
bj

j ,W
by1
y1 ,W

1−by1
y1 , . . . , W

bym
ym ,W

1−bym
ym , ci, cj , cy1 , . . . , cym , Q0,0

t ,

Q0,1
t , Q1,0

t , Q1,1
t) are set to the values given byPn. By the definition ofPn, whenPn(0) is invoked we get

the distribution ofHn
t , that is the gatet is “fake”; on the other hand, ifPn(1) is invoked then the gatet is

“real” and we get the distribution ofHn
t+1. Hence, by Claim A.1,A′n has the desired advantage. Finally,

sinceHn
t runs in polynomial time (whenxn is given), the size ofA′n is indeed polynomial.

A delicate point. Note thatPn does not output theinactive keys of the wiresi andj (which is crucial
for Claim A.3 to hold). However, the hybrid distributions useinactive keys of wires that either enter a real
gate or leave a real gate (in the first case theinactive keys are used as the keys of the gate label encryption
whereas in the latter case, theinactive keys are being encrypted). Hence, we do not need theseinactive keys
to construct the rest of the distributionHn

t (or Hn
t+1), asi andj are output wires of gates that precedest

and therefore are “fake” gates. This is the reason for which we had to sort the gates. On the other hand, the
processPn must output theinactive keys of the output wires of the gatey1, . . . , ym, since these wires might
enter as inputs to another gatet′ > t which is a “real” gate in bothHn

t andHn
t+1.

We now define a related experimentP ′
n in which some of the randomness used byPn is fixed. Specif-

ically, we fix the random stringsW
by1
y1 , W

1−by1
y1 , . . . , W

bym
ym ,W

1−bym
ym , ci, cj , cy1 , . . . , cym to some value

such that the resulting experiments still can be distinguished byA′n with advantage∆(n)
Γ(n) . (The existence

of such strings is promised by an averaging argument.) For simplicity, we omit the fixed strings from the
output of this new experiment. The experimentsP ′

n(0) andP ′
n(1) can still be distinguished by some polyno-

mial size circuit with advantage∆(n)
Γ(n) . (Such distinguisher can be constructed by incorporating the omitted

32

fixed strings intoA′n.) Hence, by the contradiction hypothesis, it follows that this advantage is greater than
1

Γ(n)p(n) for infinitely manyn’s. As Γ(n) is polynomial inn (sinceCn is of polynomial size) we deduce

that the distribution ensembles{P ′
n(0)}n∈N and{P ′

n(1)}n∈N are not computationally indistinguishable, in
contradiction with the following claim.

Claim A.3 {P ′
n(0)}n∈N

c≡ {P ′
n(1)}n∈N.

Proof: Fix somen. For both distributionsP ′
n(0) andP ′

n(1), the first two entries (i.e.,W bi
i ,W

bj

j) are

two uniformly and independently2k(n)-length strings, and theactive labelQ
bi,bj

t is a function ofW bi
i ,W

bj

j

and the fixed strings. Hence, the distributionsP ′
n(0) andP ′

n(1) differ only in theinactive labelsQ
ai,aj

t for
(ai, aj) 6= (ci, cj). In P ′

n(0) each of these entries is an all-zeros string that was encrypted under uniformly
and independently chosen keyRai,aj . In the second distributionP ′

n(1), the entryQ
ai,aj

t is an encryption of a

“meaningful” message that was encrypted under the keyW
ai−ri,aj

i ⊕W
aj−rj ,ai

j , since(ai, aj) 6= (ci, cj) at

least one of the stringsW
ai−ri,aj

i ,W
aj−rj ,ai

j is not given in the output ofP ′
n(1) as part ofW bi

i ,W
bj

j . Also,

each of the stringsW
ai−ri,aj

i ,W
aj−rj ,ai

j was chosen uniformly and it appears only inQ
ai,aj

t and not in any

of the other gate labels, therefore the keyW
ai−ri,aj

i ⊕W
aj−rj ,ai

j is distributed uniformly and independently
of the other entries ofP ′

n(1)’s output. So all the entries of bothP ′
n(1) andP ′

n(0) are independent. Moreover,
the security of the encryption scheme implies that the ensemble{Qai,aj

t } for (ai, aj) 6= (ci, cj) produced by
P ′

n(1) is computationally indistinguishable from the corresponding ensemble produced byP ′
n(0), as in both

cases somep(n)-length message is encrypted under uniformly chosenk(n)-length key. (Recall thatk(n) is
polynomial inn by definition, andp(n) = O(|Cn|k(n)) = poly(n)). Hence, by Fact 2.2, the proof follows.

33

