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Abstract 1. Introduction

We study the parallel time-complexity of basic crypto-  The efficiency of cryptographic primitives is of both the-
graphic primitives such as one-way functions (OWFs) and gretical and practical interest. In this work, we consider
pseudorandom generators (PRGs). Specifically, we studytne question of minimizing thearallel time-complexity
the pogsmlllty of'computmg instances of these primitives ot pasic cryptographic primitives such as one-way func-
by NC™ circuits, in which each output bit depends on a tjons (OWFs) and pseudorandom generators (PRGs) [7, 33].
constant number of input bits. Despite previous efforts in Taking this question to an extreme, it is natural to ask if
this direction, there has been no significant theoretical ev- there are instances of these primitives that can be com-
idence supporting this possibility, which was posed as an puted inconstantparallel time. Specifically, the following

open question in several previous works. o fundamental question was posed in several previous works
We essentially settle this question by providing over- (e g. [15, 11, 9, 23, 25)):

whelming positive evidence for the possibility of cryptog-
raphy in NC°. Our main result is that every “moderately
easy” OWF (resp., PRG), say computable NC', can

be compiled into a corresponding OWF (resp., low-stretch
PRG)inNCj, i.e. whose output bits each dep_eqd on at most Recall thatNC' is the class of functions which can be com-
4 input bits. The existence of OWF and PR@Gid" isarel-  pyted by (a uniform family of) constant-depth circuits with
atively mild assumption, implied by most number-theoretic o nded fan-in. In aiNC® function each bit of the output

or algebraic intractability assumptions commonly used in gepends on a constant number of input bits. We refer to this

cryptography. Hence, the existence of OWF and PRG in¢onstant as theutput localityof the function and denote by
NC" follows from a variety of standard assumptions. A sim- N(© the class oNC? functions with localityc.

ilar compiler can also be obtained for other cryptographic

primitives such as one-way permutations, encryption, Com'might be tempted to conjecture that cryptographic hardness

mitment, and collision-resistant hashing. . . X .
’ .requires some output bits to depend on many input bits. In-
The above results leave a small gap between the possi- q P P y Inp

- . . Lt deed, this view is advocated by Cryan and Miltersen [9],
bility of cryptography inNC} and the known impossibility : L )
of implementing even OWF mcg. We partially close this whereas Goldreich [11] takes an opposite view and sug

- ) . gests a concrete candidate for OWRNG. However, de-

gap .by providing eV|_dence for the existence of OWN@.B" spite previous efforts, there has been no significant theoret-

F'r.“'.""y’ our techniques can algo be applied to obtain UN-ical evidence supporting either a positive or a negative res-
conditionally provable constructions of non-cryptographic olution of this question
PRGs. In particular, we obtain-biased generators ilNC3, '
resolving an open question posed by Mossel et al. [25], as
well as a PRG for logspace iNC°.

Our results make use of the machineryrafdomizing
polynomials[19], which was originally motivated by ques-

tions in the domain of information-theoretic secure multi-  Linial et al. show that pseudorandofunctionscannot
party computation. be computed even iAC° [24]. However, no such impossi-

bility result is known for PRGs. The existence of PRGs in
NC? has been recently studied in [9, 25]. Cryan and Mil-
tersen [9] observe that there is no PR@AY, and prove

+  Supported by grant no. 36/03 from the Israel Science Foundation. that there is no PRG iNCg achieving a superlinear stretch;

Are there one-way functions, or even pseudoran-
dom generators, iNC°?

The above question is qualitatively interesting, since one

1.1. Previous Work




namely, one that stretchesbits ton + w(n) bits! Mos- An overview of the main ideas used for obtaining these

sel et al. [25] extend this impossibility t§CY. Viola [31] results appears in Section 2. The reader might want to skip
shows that alAC® PRG with superlinear stretch cannot to that section before moving on to the following, more de-

be obtained from a OWF via non-adaptive black-box con- tailed, account of results.

structions. Negative results for other restricted computationA GENERAL COMPILER OUr main result is that any OWF

models appear in [10, 35]. (resp., PRG) in a relatively high complexity class, contain-

On the positive side, Impagliazzo and Naor [18] con- ;, ; 1 L
. . ) g uniform NC* and even®L/poly, can be efficiently
struct a (sublinear-stretch) PRG ACY, relying on an in- “compiled” into a corresponding OWF (resp., PRG) in

tractability assumption related to the subset-sum problem.NCi. (The class®L/poly containsL /poly and NC! and

PRG candidates iNC" (or even TC) are more abundan_t, is contained iNNC?. In a non-uniform setting it also con-

and can be based on a variety of standard cryptographic aSfains NL/poly [32].) The existence of OWF and PRG in
sumptions including ones related'to the intractability of fac- this class is a mild assumption, implied in particular by
toring [29, 13, 21], discrete logarithms [7, 33, 27] and lat- ,n5t number-theoretic or algebraic intractability assump-
tice pr_oblems [2, 16f. tions commonly used in cryptography. Hence, the existence
_ Unlike the case of pseudorandom generators, the quesyt oyyE and PRG ilNC? follows from a variety of standard
tion of one-way functions INC™ is relatively unexplored. ;g mptions and is not affected by the potential weakness
The impossibility of OWFs inNC,, follows from the eas- ¢ 5 nanicular algebraic structure. A similar compiler can
iness of 2-SAT [11, 9]. Wstad [15] constructed a family 554 pe obtained for other cryptographic primitives includ-
of permutations iNC™ whose inverses are P-hard to Com- 4 5ne way permutations, encryption, signatures, commit-
pute. Cryan and Miltersen [9], improving on [1], presented oy anq collision-resistant hashing (see Section 7).

a circuit family in.NC§ whose range decigion problem is It i,s important to note that thNCZ PRG produced by
NP-complete. This, however, gives no evidence of crypto- o, compiler will generally have a sublinear additive stretch
graphlc stren_gth. Since any PRG is also a _OWF’ all PRG even if the original PRG has a large stretch. However, one
candidates cited above are also OWF candidates. (In fathannot do much better, as there is no PRG with superlin-
the one-wayness of aiC" function often serves as the un- ear stretch iNC? [25] '

derlying cryptographiassumptior Finally, Goldreich [11] 4 '

suggested a candidate OWFNI©”, whose conjectured se- OWF WITH OPTIMAL LOCALITY. The above results leave

curity does not follow from any well-known assumption. @ Small gap between the possibility of cryptographyid;
and the known impossibility of implementing even OWF in

1.2. Our Results NC,. We partially close this gap by providing positive ev-
idence for the existence of OWF mcg. Specifically, we

As indicated above, the possibility of implementing most construc’g such OWF ba_sed on either: (1) the intractability
cryptographic primitives inNC® was left wide open. We of decoding a random linear code;1 or (2) the existence of
present a positive answer to this basic question, show-& moderately-easy OWF (say, WMC") that enjoys a cer-
ing that surprisingly many cryptographic tasks can be per- tain strong “robu;tness” property. Wg show that a seemingly
formed in constant parallel time. conservative variant of a OWF gandldate suggest(_ed by qu—

Since the existence of cryptographic primitives implies dreich [11] provably satisfies this property, assuming that it
thatP # NP, we cannot expect unconditional results and 1S indeed a OWF. Fur';her deta|I§ are omitted _from this ex-
have to rely on some unproven assumptidrisowever, tended abstract and will appear in the full version.
we avoid relying orspecificintractability assumptions. In-  NON-CRYPTOGRAPHIC GENERATORSOUr technigques can
stead, we assume the existence of cryptographic primitivesalso be applied to obtain unconditional constructions of
in a relatively “high” complexity class and transform them non-cryptographic PRGs. In particular, building on @n
to the seemingly degenerate complexity clags’ with- biased generator iINC? constructed by Mossel et al. [25],
out substantial loss of their cryptographic strength. Thesewe obtain a linear-stretctrbiased generator iNcg. This
transformations are inherently non-black-box, thus provid- generator has optimal locality, answering an open question
ing further evidence for the usefulness of non-black-box posed in [25]. (It is also essentially optimal with respect
techniques in cryptography. to stretch, since locality 3 does not allow for a superlinear
stretch [9].) Our techniques apply also to other types of non-

1 From here on, we use a crude classification of PRGs into ones hav-cryptographic PRGs such as generators for logspace [4, 28],
ing sublinear, linear, or superlinear additive stretch. Note that a PRG yjie|ding the first such generatorsIivC®
stretching its seed by just one bit can be invokegarallel to yield a y 9 9 NC™.
PRG stretching its seed by —< bits, for an arbitraryg > 0. . .
2 In some of these constructions it seems necessary to abbolegtion 2. Overview of Techmques
of NC! PRGs, and use polynomial-time preprocessing to pick (once

and for all) a random instance from this collection. This is similar to - . . . .
the more standard notion of OWF collection (cf. [12], Section 2.4.2). Our key observation is that instead of computing a given

3 This is not the case for non-cryptographic PRGs suckiased or  “Cryptographic” functionf(x), it might suffice to compute
logspace generators, for which we do obtain unconditional results. 5 functionf(x r) having the foIIowing relation tqf:
, :




1. For every fixed input: and a uniformly random choice  output is longer than its input. However, by imposing suit-
of r, the output distributiory (z, ) forms a “random-  able “regularity” requirements on the output encoding de-
ized encoding” off(z), from which f(z) can be de-  fined by f, it can be guaranteed that ffis a PRG then so
coded. That is, iff(z) # f(a') then the random s f. Thus, different security requirements suggest differ-
variablesf(xz,r) and f(2’,'), induced by a uniform  ent variations of the above notion of randomized encoding.
choice ofr, r’, should have disjoint supports.

2. The distribution of this randomized encoding depends 2.2. Complexity of Randomized Encodings

only on the encoded valug(z) and does not further ) _
depend onc. That is, if f(z) = f(z') then the ran- It remains to address the second issue: how can we en-

code a complex functiofi by anNC" function f? Our best
solutions to this problem rely on the machineryrafidom-
izing polynomialsdescribed below. But first, we outline a
simple alternative approattbased on Barrington’s theo-
rem [5], combined with a randomization technique of Kil-
ian [22].

Supposef is a boolean function ilNC*. (Non-boolean
Each of these requirements alone can be satisfied by a triviafunctions are handled by repeating the following procedure
functionf (e.g..f(z,r) = z andf(z,r) = 0, respectively). ~ for each bit of the output.) By Barrington’s theorem, evalu-
However, their combination can be viewed as a non-trivial ating f(z) reduces to computing an iterated product of poly-

dom variablesf (, ) and f (', ") should be identi-
cally distributed. Furthermore, we require that the ran-
domized encoding of an output valyebe efficiently
samplable givery. Intuitively, this means that the out-
put distribution off on inputz reveals no information
aboutz except what follows fromy (z).

natural relaxation of the usual notion of computing. In a nomially many elements,,...,s,, from the symmetric
sense, the functioi defines an “information-theoretically ~9"0UPSs, where each; is determined by a single bit of.
equivalent” representation ¢f. In the following, we refer ~ Now, let f(z,7) = (s171, ritsora, o S 1T,
to f as arandomized encodingf f. % 5.,), Where the random inputs are picked uniformly
For this approach to be useful in our context, two con- and independently fronss. It is not hard to verify that the
ditions should be met. First, we need to argue that a ran-output(¢,...,t,) of f is random subject to the constraint
domized encoding can besecurelyused as a substitute for  thattits -+t = sis2--sn,, where the latter product is
f. Second, we hope that this relaxation is sufficietithy in one-to-one correspondence fx). It follows that f is

eral, in the sense that it allows to efficiently encode rela- a randomized encoding gf Moreover, f has constant lo-
tively complex functionsf by functionsf in NC°. These cality when viewed as a function over the alphabgtand

two issues are addressed in the following subsections. thus yields the qualitative result we are after. Still, this con-
struction falls short of providing a randomized encoding in
NCY, since it is impossible to sample a uniform element
of S5 in NC° (even up to a negligible statistical distance).
Also, this f does not satisfy the properties required by more
“sensitive” primitives such as PRGs or one-way permuta-
tions. The solutions presented next avoid these disadvan-
tages and, at the same time, apply to a higher complexity
class thalNC! and achieve a very small constant locality.

2.1. Security of Randomized Encodings

To illustrate how a randomized encodirfgcan inherit
the security features of, consider the case whejkis a
OWF. We argue that the hardness of invertjigeduces to
the hardness of inverting. Indeed, a successful algorithm
A forinverting f can be used to successfully invéras fol-
lows: given an outpuy of f, apply the efficient sampling RANDOMIZING POLYNOMIALS. The concept of randomiz-
algorithm guaranteed by requirement 2 to obtain a randoming polynomials was introduced in [19] as a representation

encodingy of y. Then, useA to obtain a preimagéz, r) of functions by vectors of low-degree multivariate polyno-
of § under f, and outputz. It follows from requirement 1~ mials. (Interestingly, this concept was motivated by ques-
thatz is indeed a preimage aof Moreover, ify is the im- tions in the area oihformation-theoreticsecure multiparty

age of a uniformly randonz, theng is the image of a uni- ~ computation, which seems unrelated to the current con-

formly random pair(z, ). Hence, the success probability text.) Randomizing polynomials capture the above encod-

of inverting f is the same as that of invertirfg ing questlon within an algebralg f_ramework. S_pec_:|f|cally, a
The above argument can tolerate some relaxations to thd&Presentation of (z) by randomizing polynomials is a ran-

notion of randomized encoding. In particular, one can re- domized encoding(z, ) as defined above, in whichand

lax the second requirement to allow a small statistical vari- 7 are viewed as vectors over a finite fiefdand the out-

ation of the output distribution. On the other hand, to main- Puts of f as multivariate polynomials in the variablesr.

tain the security of other cryptographic primitives, it may In this work, we will always letr = GF(2).

be required to further strengthen this notion. For instance,

when f is a PRG, the above requirements do not guaran-4 In fact, a modified version of this approach has been applied for con-

tee that the output of is pseudo-random, or even that its ~ Structing randomizing polynomials in [8].




The most crucial parameter of a randomizing polynomi- 3. Preliminaries
als representation is its algebrdiegree defined as the max-
imal (total) degree of the outputs as a function of the input Probability notation. Let U,, denote a random variable that
variablesr, r. (Note that both: andr count towards the de-  is uniformly distributed ovef0, 1}". Different occurrences
gree.) ltscomplexityis measured as the total number of in- of U,, are independent. Thstatistical distancebetween
puts and outputs. Quite surprisingly, it is shown in [19, 20] discrete probability distribution¥” and Y’ is defined as
that every boolean functiofi : {0,1}"™ — {0,1} admits a SD(Y,Y”) gef %Z |Pr[Y = y] — Pr[Y’ = y]|. A func-
representation bgtegree-Jandomizing polynomials whose 4 e(-) is said té’ benegligibleif c(n) < n—° for any

complexity is at most quadratic in its branching program . . anq sufficiently large:. For two distribution ensem-
size® (Moreover, this degree bound is tight in the sense that plesy” — (v} andY’ = {Y'}, we writeY = Y"if ¥, and
most boolean functions do not admit a degree-2 representas , are identiball distribute?‘j :';mY:I 2 V7 if the two eﬁsem-
tion.) Note that a representation of a non-boolean function bln tati t'y Iy indisti P hNbI ER(Y. .Y
can be obtained by concatenating representations of its out: €s are statistically indistinguishable, nam B, Y5)
put bits, using independent blocks of random inputs. This is negligible inr.

concatenation leaves the degree unchanged. Branching programs A branching program (BP) is defined
by a tupleBP = (G, ¢,s,t), whereG = (V, E) is a di-
rected acyclic graphy is a labeling function assigning each
edge a a positive literal;, a negative literak, or the con-
stant 1, and, ¢t are two distinguished nodes Gf. Thesize

The above positive result implies that functions whose
output bits can be computed in the complexity class
®L/poly admit an efficient representation by degree-3 ran-

domizing polynomials. This also holds if one requires the . . . :
most stringent notion of representation required by our ap- of BP is the number of nodgs 6. Each input assignment
w = (wy, ..., w,) Naturally induces an unlabeled subgraph

plications. We note, however, that different constructions ; ;

from the literature [19, 20, 8] are incomparable in terms Gfu_j,(;/vgose %?Dges mcll;de &”.E Edsg%‘ tha?(e) IS St‘f"t'_ .
of their exact efficiency and the security-preserving fea- IShe dy':U. : .Str.Tc]Bag € ?‘SS'@tl”e. : er(?[nds_%man IS N
tures they satisfy. Hence, different constructions may be & NON-deterministi®r, an inputw 1S accepted 1tr,, con-

suitable for different applications. These issues are dis-tains at_least one path fromto ¢; in %mOdp BP,w Is ac-
cussed in Section 4. cepted if the number of such paths is nonzero mogula

this work, we will mostly be interested in mod-2 BPs.

o Function families and representationg/e associate with a
DEGREE VS LOCALITY. Combining our general method-  fynction f {0,1}* — {0, 1}* a function family{ f, }nen,
ology with_the above results on random_izing polynomials where f,, is the restriction off to n-bit inputs. We assume
already brings us close to our goal, as it enables “degree-y| functions to be length regular, namely their output length
3 cryptography”. Taking on from here, we show that any gepends only on their input length. Hence, we may write
function f : {0,1}"™ — {0,1}™ of algebraic degreé ad- £o 2 0,13 = {0,1}™. We will represent functiong
mits an efficient randomized encodifigf degreeland lo- by families of circuits, branching programs, or polynomial
cality d + 1. That is, each output bit of can be computed  vectors. Whenevef is taken from a uniform class, we as-
by a degreet polynomial ovelGF (2) depending on at most  sume that its representation is uniform as well. That is, the
d + 1 inputs and random inputs. Combined with the previ- representation of,, is generated in time poly.) and in par-
ous results, this allows us to make the final step from degreeticular is of polynomial size. We will often abuse notation
3 to locality 4. and write f instead off,, even when referring to a func-

tion onn bits.

Paper organization.Following some preliminaries (Sec- | ocality and degreeWe say thatf is c-local if each of its
tion 3), in Section 4 we formally define our notion of ran- output bits depends on at meshput bits. The non-uniform
domized encoding and discuss some of its variants, prop-classNC? includes alk-local functions. We will sometimes
erties, and constructions. In Section 5 we apply random-view the binary alphabet as the finite fiefd = GF(2),
ized encodings to construct OWFsNC® and in Section 6  and say that a functiorf has degreel if each of its out-

we do the same for cryptographic and non-cryptographic puts can be expressed as a multivariate polynomial of de-
PRGs. Finally, in Section 7 we discuss extensions to othergree (at mostyl in the inputs.

cryptographic primitives, and in Section 8 we conclude with _ _ .
Complexity classesk-or brevity, we assume all complexity

some further research directions. For lack of space, some | b | i i by defaul :
proofs were omitted from this version. classes to be polynomial-time uniform by default. For in-

stanceNC" refers to the class of functions admitting uni-
form NC° circuits. We letNL/poly (resp.,®L/poly) de-
note the class of boolean functions computed by a uniform
5 By default, “branching programs” refer here to mod-2 branching pro- family of nondeterministic (resp., modulo-2) BPs. Equiva-
grams, which output the parity of the number of accepting paths. See lently, these are the classes of functions computediby
Section 3. (resp.,®L) Turing machines taking a uniform advice. We




extend boolean complexity classes, suchiNas/ poly and and privacy. We say that an encodingbslancedif it ad-
@L/poly, to include non-boolean functions by letting the mits a perfectly private simulatd# such thatS(U;) = Us.
representation includé&n) branching programs, one for SuchsS will be referred to as &alanced simulatarWe say
each output. Uniformity requires that thign) branching  that the encoding istretch preservinif f has the same ad-

programs be all generated in time poty. ditive stretch ag; namely,s — (n +m) = | — n or equiva-
lently s = I + m. We are now ready to define our two main
4. Randomized Encodings of Functions variants of randomized encoding.

_ . _ Definition 4.2 (Statistical randomized encoding)A sta-
We now formally introduce our notion of randomized tistical randomized encodings a randomized encoding
encoding, discuss some of its variants and properties, andvhich is statistically correct and private.

present constructions of randomized encodingSGH. Definition 4.3 (Perfect randomized encoding)A perfect

o randomized encodingis a randomized encoding which
4.1. Definitions is perfectly correct and private, balanced, and stretch-
preserving.
Definition 4.1 (Randomized encoding)letf : {0,1}" —
{0,1}" be a function. We say that a functigh: {0,1}" x
{0,1}™ — {0, 1}® is ad-correct,e-privaterandomized en-
codingof f, if it satisfies the following:

A perfect randomized encoding guarantees the existence
of a perfect simulatos whose2' output distributions form
a perfect tiling of the spacf), 1}* by tiles of size2™.

Finally, we define two complexity classes that capture
e J-correctness. There exists a (possibly randomized) the power of randomized encodingsNit’.

algorithm C, called adecodey such that for any in-  pefinition 4.4 (The classes SREN, PREN)The class

putz € {0,1}", Pr[C(f(z,Un)) # f(x)] < 6. SREN (resp., PREN) is the class of functions admit-
ting statistical (resp., perfect) randomized encoding in

e c-privacy. There exists a randomized algorith, NCO

called asimulator such that for anyz € {0,1}",

SD(S(f(x)), f(x,Unm)) < €.

We refer to the second input ffas itsrandom input

4.2. Basic Properties

We now put forward some useful properties of random-
On uniform randomized encodings.The above definition  jzed encodings, which are stated here without a proof. We
naturally extends to functiong : {0,1}* — {0,1}*.Infirst argue that an encoding of a non-boolean function can
this case, the parametdrsn, s, d, ¢ are all viewed as func-  pe obtained by concatenating encodings of its output bits,
tions of the input length, and the algorithmg’, S receive  ysing an independent random input for each bit. The result-
1" as an additional input. In our default uniform setting, ing encoding inherits all the features of the concatenated en-
we require thatf,,, the encoding off,,, be computable in  codings. Thus, the following lemma applies to both the sta-
time poly(n) (givenz € {0,1}" andr € {0,1}™("™), tistical and the perfect cases.
Thus, in this setting bothn(n) and s(n) are polynomial. ; i) . n
We also r_e_qu_ire both theT de_coder an.d t.he simulator to runll'e;nr?a §4'15, (b(éotnhc;\ tgg;g%?';j;gt(i ;ﬁs{gbﬁpuﬁnéotyhle} ’out-
in probabilistic polynomial time. (This is not needed by bits of f - {0,117 TR0 @) i
some of the applications, but is a feature of our construc- Put bits 0 fid i 3t = A0 1) I £, ) i a
. . . . N . randomized encoding of ) (z), then the concatenation
tions.) Finally, we will sometimes viey as a function of N ) Oy & F1) ) A0) OV i
a single input of length. + m(n) (e.g., when using it as /(@ (", ... r®)) = (fP (@, rt), o fO(@, rt)) is
OWF or PRG). In this case, we require(-) to be mono- & randomized encoding gt
tone (so thatr + m(n) uniquely determines), and ap- When applying the above lemma in a uniform setting, we
ply a standard padding technique for definifigon inputs assume thal{n) = poly(n) and that the famil)fﬁ” is uni-
whose length is not of the form + m(n). Specifically, if form both inn ands.
n+mn)+k< m+1)+mn+1)we definef on in- Another useful feature of randomized encodings is the

puts of lengthn + m(n) + & by paddingf, with k addi-  following intuitive composition property: suppose we en-
tional input bits and adding these bits to the outpuffpf ~ c°def by g, and then viewy as a deterministic function and
The above conventions will be implicit in the following. encode it again. Then, the resulting function (parsed appro-
We move on to discuss some variants of the basic def_pnately) IS a randomlzed er!codlng pngam, the fOHOW.'
inition. Correctness (resp., privacy) can be eiterfect ing lemma applies to all variants of randomized encoding.

whend = 0 (resp.c = 0), or statistical whend(n) (resp. Lemma 4.6 (Composition) Let g(x,r) be a randomized
e(n)) is negligible. While for some of the primitives (such encoding off(z) andh((z,r),r’) a randomized encoding
as OWF) statistical privacy and correctness will do, oth- of g(x,r). Then,h is a randomized encoding g¢f whose

ers require even stronger properties than perfect correctnesseandom inputs arér, ).



Finally, we state two useful features oparfectencod-
ing.

Lemma 4.7 (Unique randomness)Supposef is a perfect
randomized encoding of. Then,f satisfies the following
unique randomnegsroperty: for any inpute, the function

f(x,-) is injective, namely there are no distinetr’ such

that f(z,r) = f(x,r'). Moreover, if f is a permutation
then so isf.

4.3. Constructions

In this section we construct randomized encodings in

NCP. We first review a construction from [20] of degree-

3 randomizing polynomials based on mod-2 branching pro-

Proof: We start by describing the simulator and decoder
algorithms. Given an output ¢f, representing a matrix/,
the decodelC' simply outputsdet(Af). (Note that the en-
tries below the main diagonal of this matrix are constants
and therefore are not included in the outpu;f’@fThe sim-
ulator S, on inputy € {0, 1}, outputs the(%) entries on and
above the main diagonal of the matix (r™")) 1, Ry (r(?)),
wherer(®), r(2) are randomly chosen, arid, is the (¢ —
1) x (¢ — 1) matrix that contains-1's in its second diago-
nal, y in its top-right entry, and’s elsewhere. The perfect-
ness of the”, S follows from Facts 4.8, 4.9; for a detailed
proof the reader is referred to [20].

We now prove the other properties of a perfect encoding
that are not explicit in [20]. The length of the random input
of fism = (‘3') +£—2 = (£) — 1 and its output length is

grams and analyze some of its properties. Then, we apply as = (5) Thus we have = m + 1, and sincef is a boolean

general locality reduction technique, allowing to transform
a degreet encoding to dd + 1)-local encoding.

DEGREE3 RANDOMIZING POLYNOMIALS FROM MOD-
2 BRANCHING PROGRAMS[20]. Let BP = (G, ¢,s,t)
be a mod2 BP of size/, computing a boolean function
f :{0,1}™ — {0,1}. Fix some topological ordering of
the vertices of7, where the source vertexs labeledl and
the terminal vertex is labeled?. For any inputz, let A,
be thel x ¢ adjacency matrix of7,, viewed as a matrix
over GF(2). Define L(z) as the submatrix oft, — I ob-
tained by deleting columsand rowt (i.e., the first column
and the last row). Each entry df(z) is a degree- poly-
nomial in a single input variable;; moreover,L(x) con-
tains the constant-1 in each entry of its second diagonal
(the one below the main diagonal) and the constahe-
low this diagonal.

Fact 4.8 ([20]) f(z) = det(L(x)).

Let () andr® be vectors oveGF(2) of length (“;")
and/¢—2 respectively. LeR, (r(1)) be an(¢—1) x (¢—1) ma-
trix with 1’s on the main diagonal)’s below it, andr(!)’s
elements in the remainin(f;l) entries above the diago-
nal (a unique element of V) is assigned to each matrix en-
try). Let Ry(r)) be an(¢ — 1) x (¢ — 1) matrix with 1's
on the main diagonak(?)’s elements in the rightmost col-
umn, and)’s in each of the remaining entries.

Fact 4.9 ([20]) Let M, M’ be (¢ — 1) x (¢ — 1) matrices
that contain the constant-1 in each entry of their sec-
ond diagonal and the constafitbelow this diagonal. Then,
det(M;) = det(M>) if and only if there exist!) andr(?)
such thatR; (r)M Ry (r(?) = M.

Lemma 4.10 (implicit in [20]) Let BP andf be as above.
Define a degree-3 functiofi(, (r("), »(?))) whose outputs
contain the(ﬁ) entries on or above the main diagonal of the
matrix Ry (r(V)L(z) Ry (). Then,f is a perfect random-
ized encoding of.

function its encoding’ preserves its stretch.

It remains to show thaf is balanced. It follows from
Fact 4.9 and the description 6fthat the support of(b),
b € {0,1}, includes all strings i{0, 1}° representing ma-
trices with determinant. Hence,S(0) and S(1) cover the
entire spacg0, 1}*. Since we have already shovfito be
stretch-preserving, the simulat8must be balanced. =

REDUCING THE LOCALITY. It remains to convert the
degree-3 encoding into one MCP. To this end, we show
how to construct for any degregfunction (wherel is con-
stant) a(d + 1)-local perfect encoding. Using the com-
position lemma, we can obtain aNC° encoding of a
function by first encoding it as a constant-degree func-
tion, and then applying the locality construction.

The idea for the locality construction is to represent a
degreed polynomial as a sum of monomials, each having
locality d, and randomize this sum using a variant of the
method for randomizing group product, described in Sec-
tion 2.2. (A direct use of the latter method over the group
Z, gives a(d + 2)-local encoding instead of thel + 1)-
local one obtained here.)

Construction 4.11 (Locality construction) Let f(
Ty (z)+ ...+ Tx(x), where summation is oveéiF (2

local encodingf is defined by:

x) =
). The

2 def
f(fl;', (7’1,...77‘]“71;,..',7‘;“_1)) :e

(T1($C) — T‘1,T2(CC) —T2,.. 7Tk(av) — Tk,

TL =TT T2 =T Th_g F Th—1 — Th_1,Tk_1 + Tk)-

Lemma 4.12 (Locality lemma) Let f and f be as in Con-
struction 4.11. Thenf is a perfect randomized encoding of
f- In particular, if f is a degreed polynomial written as the
sum of monomials, the)f'lis a perfect encoding gf with de-
greed and localitymax(d + 1, 3).

Proof: Sincem = 2k — 1 ands = 2k, f is stretch pre-
serving. Moreover, it is easy to verify that the outputs add

up to f(z). It thus suffices to show that the outputsfdf:)



are uniformly distributed subject to the constraint that they
add up tof(x). This follows by observing that, for any
and any assignmente {0,1}2*~! to the first2k — 1 out-
puts off(ac), there is a unique way to set the random inputs
r;, 7} so that the output of (z, (r, 7)) is consistent withy.
Indeed, forl < i < k, the values ofr, y; uniquely deter-
miner;. Forl <i < k — 1, the valuesgy4,, r;, r,_, deter-
miner;. (wherer), = 0). |
Combining the degree-3 construction of Lemma 4.10 to-

that there is an efficient algorithi inverting f,, (z, ) with
success probabilitg(n + m) > m for some polyno-
mial ¢(-) and infinitely manyn’s. We useB to construct an
efficient algorithmA that invertsf with similar success. On
input (1", y = f(U,)), the algorithmA runs.S, the statis-
tical simulator off,,, on the inputy and gets a string as
S’s output. A proceeds by running the invert8ron the in-
put(17+t™ ), getting(z, r) asB’s output (i.e.,B “claims”
that f,, (z, ) = §). A terminates with output.

gether with the locality lemma (4.12), composition coypexiTy: sinceS and B are both polynomial-time al-

lemma (4.6), and concatenation lemma (4.5), we get the

main theorem of this section.

Theorem 4.13 &L /poly € PREN. Moreover, anyf €
PREN admits a perfect randomized encodingNe';.

Remark 4.14 A more direct approach for perfect random-
ized encodings inNC' is possible using a randomizing

polynomials construction from [20], which is based on an

information-theoretic variant of Yao’s garbled circuit tech-
nigue [34]. This construction directly gives an encoding
with (large) constant locality for functions IRC*.

There are variants of the above construction that can han- _
dle non-deterministic branching programs as well, at the ex-
pense of losing perfectness [19, 20]. Thus, we get the fol-

lowing theorem, whose proof is deferred to the full version.

Theorem 4.15NL/poly € SREN. Moreover, anyf €
SREN admits a statistical randomized encodingNi®.

5. One-Way Functions inNC°

A one-way functiofOWF) f : {0,1}* — {0,1}* is a
polynomial-time computable function that is hard to invert;
namely, every polynomial time algorithm that tries to in-
vert f on f(z), wherez is picked fromU,,, succeeds with a
negligible probability. In the following, we show that a ran-
domized encoding of a OWF is also a OWF. The idea, as
described in Section 2.1, is to argue that the hardness of in
verting f reduces to the hardness of invertifigHere, we
will further formalize this claim and slightly strengthen it.
We start with a technical claim.

Claim5.1 Let f : {0,1}" x {0,1}™ — {0,1}* be a
perfectly private (resp., statistically private) randomized
encoding off : {0,1}" — {0,1}, and let S be its
perfect (resp., statistical) simulator. The#(f(U,)) =
f(Una Um(n)) (respas(f(Un)) ~ f(U’I’H Um(n)))

Lemma 5.2 Suppose thaf : {0,1}* — {0,1}* is hard to
invert andf (z,r) is a perfectly-correct, statistically-private

(uniform) encoding of . Thenf, viewed as a deterministic
function, is also hard to invert.

Proof: Lets = s(n),m = m(n) be the lengths of the

output and random input of respectively. We prove that
is as “hard to invert” ag. Assume, towards a contradiction,

gorithms, and sincen(n) is polynomially bounded, it fol-
lows thatA is also a polynomial-time algorithm.
CORRECTNESS Observe that, by perfect correctness, if
f(z) # f(«') then the set(z,U,,) and f(2’,U,,) are

disjoint. Hence, ifB succeeds (that is, indegd= f,,(z,))
then so doest (namely, f(z) = y). Next, observe that by
Claim 5.1 the inputj on which A runs B is £(n)-close to

Jn(Un, Un(ny), @nd therefore3 succeeds with probability
> ¢(n 4+ m) — e(n). Formally, we can write:
Pr [AQ" J(@) € £ (f(@))]
n+m -~ F—1/~
erM}';rs(f(w))[B(l 9) € f (@)

Pr  [BOU"™™, fu(z,r) € 7 (f(z,7))] —e(n)

z€Un,r€Up(n)
1

q(n+m)

>

> ¢(n+m) —e(n) >

whereq’(n) is a polynomial. It follows thayf is not a one-
way function, in contradiction to the hypothesis. ]

The perfect correctness gfis essential for Lemma 5.2
to hold. In the full version we show that everyifs only sta-
tistically correct, it is stilldistributionally one-way [17]. In
this case, one can apply a standard transformation (cf. [12],
p. 96) to convert a distributionally OWFin NC° to a OWF
f"in NC!, and then encode the latter by a OWFNC°.
Based on the above, we get:

Theorem 5.3 AOWF inSREN (in particular, in®L/poly
or NL/poly) implies a OWF irNC}.

Combining Lemma 5.2 and Lemma 4.7, we get a similar
result for one-way permutations.

Theorem 5.4 A one-way permutation iPREN (in par-
ticular, in ®L/poly) implies one inNCY.

A NOTE CONCERNING EFFICIENCYLOOSely speaking, the
main security loss in the reduction follows from the expan-
sion of the input. (The simulator’s running time has a mi-
nor effect on the security, since it is added to the overall
running-time of the adversary.) Thus, to achieve a similar
level of security to that achieved by applyirigon n-bit in-
puts, one would need to appfyonn + m(n) bits (the ran-
dom input part of the encoding does not contribute to the se-
curity). Going through our constructions (bit-by-bit encod-
ing of the output, based on some s¥4e-) BPs, followed by



the locality reduction), we get(n) = I(n) - poly(¢£), where
I(n) is the output length of . Some more efficient alterna-
tives will be discussed in the full version.

6. Pseudorandom Generators irlNC"

A pseudorandom generatig an efficiently computable
functionG : {0,1}" — {0,1}(™) such that: (1)& has a
positive stretch, namelyn) > n; (2) any “computationally
bounded” algorithnD, called adistinguisherhas a negligi-
ble advantage in distinguishir@(U,,) from Uj(,,y. That is,
| Pr[D(1™,G(U,)) = 1] = Pr[D(1™,Uyy,y) = 1]] is negli-
gible inn.

Different notions of PRGs differ mainly in the computa-
tional bound imposed o®. In the default case dfrypto-
graphicPRGs,D can be any probabilistic polynomial-time
algorithm (alternatively, polynomial-size circuit family). In
the case of-biasedgeneratorsD can only compute a linear
function of the output bits, namely the exclusive-or of some

subset of the bits. Other types of PRGs, e.g. for logspace

computation, have also been considered.

We show that gerfectrandomized encoding of a PRG
is also a PRG. We start by proving this claim for crypto-
graphic PRGs and then obtain a similar resultddnased

Remark 6.3 The transformation of OWF to PRG from [16]
(Construction 7.1) involves only the computation of univer-
sal hash functions and hard-core bits in the case that the “en-
tropy” of the OWF is known (e.g., if the OWF is regular).

In this case, alNC' OWF can be transformed into &C*
PRG® Combined with Theorems 5.3, 6.2, this yields a PRG
in NCY based on regular OWF iI§REN (alternatively, a
PRG in nonuniformNCY from any OWF inSREN).

6.2. ¢-Biased Generators

The proof of Lemma 6.1 uses the balanced simulator to
transform a challenge fa# into a challenge for. If this
transformation can be made linear, then the security reduc-
tion goes through also in the caseselbiased generators.

Lemma 6.4 Let G be ans-biased generator and: a per-
fect randomized encoding 6f. Assume that the balanced
simulator of G is linearin the sense that it outputs a ran-
domized linear transformation @¥(z) (which is not nec-
essarily a linear function of the simulator’'s randomness).
Then,G is also ans-biased generator.

Proof sketch: The proof is similar to that of Lemma 6.1.
By an averaging argument and by the linearity of the simu-

generators. The discussion of generators for logspace is detator, it follows that a linear distinguisherfé? can be trans-

ferred to the full version.

6.1. Cryptographic Generators

Lemma6.11f G : {0,1}* — {0,1}' is a PRG and
G : {0,1}™ x {0,1}™ — {0,1}* is a (uniform) perfect
randomized encoding @f, thend is also a PRG.

Proof sketch: ~ Since( has the same additive stretch as
G, itis guaranteed to expand its seed. To prove the pseudo
randomness of its output, we again use a reducibility argu-
ment. Given a distinguishe@ betweern/, andG'(Un, Un),
we obtain a distinguished betweenl/; andG(U,,) as fol-
lows. On inputy € {0, 1}, run the balanced simulator 6f
ony, and invokeD on the resulf. If y is taken fromlJ; then
the simulator, being balanced, outpgtshat is distributed
asUsy; if y is taken fromG(U,,) then, by Claim 5.1, the out-
put of the simulator is distributed ai%(Un, U,.)- Thus, the
distinguisherD we get forG has the same advantage as the
distinguisherD for G. Sincem(n) is polynomial inn, this
advantage is negligible also in+ m. ]
Thus, we get:

Theorem 6.2 A pseudorandom generator iIRREN (in
particular, in L /poly) implies one inNC}.

We stress that thalC PRG @ one gets from our con-
struction has a sublinear stretch eve@ifias a large stretch.
This follows from the fact that the length(n) of the ran-
dom input is superlinear in the input length

formed into a (nonuniform) linear distinguisher 6t M

Mossel et al. present arrbiased generator in nonuni-
form NC? with degree2 and a linear stretch ([25], Theo-
rem 14). Since this generator is alreadyNa’, applying
the locality reduction keeps the stretch linear. Using Lem-
mas 4.12,6.4 we thus get:

Theorem 6.5 There is a linear-stretcla-biased generator
in nonuniformNCs.

One can also apply the locality reduction to get a uni-
form NC% generator from the-biased generata@r (x4, . . .,
x2n) = (I1, ce, Xop, T1T2 + ..+ x2n—1£2n) (Cf [30])
However, the resulting generator will have sublinear stretch.
Using our general encoding machinery, one can transform
an arbitrary uniformNC generator withinear stretch (if
such exists) into one iNCY.

7. Other Cryptographic Primitives

We now outline some extensions of our results to other
cryptographic primitives. Aiming avC® implementations,
we can use our machinery in two different ways: (1) com-
pile a primitive in a relatively high complexity class (say
NC') into its randomized encoding and show that the en-
coding inherits the security properties of this primitive; (2)
use known reductions between cryptographic primitives to-
gether withNC" primitives we construct (e.g., OWF or

6 Viola [31] obtains a similar result foACC. Our techniques allow to
further reduce the complexity of this reductionNe°.



PRG) to obtain neWwNC" primitives. We mainly adopt the an NC° PRG to mask the plaintext. However, the result-
first approach, since most of the known reductions betweening scheme is severely limited by the low stretch of our
primitives are not inNC°. Moreover, using the first ap- PRGs.

proach, we can start by reducing one primitive to another  An interesting feature of the case of commitment is that
andthenapply our machinery. (Still, below we give an ex- we can also improve the complexity at the receiver’s end; in-

ample for the usefulness of the second approach.) deed, the sender can decommit by sending its random coins,
~ We first consider the case of collision-resistant hash- and the receiver needs only to emulate the computation of
ing. Suppose that a collection of functiohsis collision-  the sender and compare it with the message it received in the

resistant, and let: be a perfect randomized encoding commit stage. Thus, the receiver can be implemented as an
of h. Then, / is also collision-resistant since any colli- NC” circuit with a single unbounded fan-in AND gate (we
sion (z,r), («/,r') underh (that is, (z,r) # («/,7') and denote such a circuit @&C°[AND]). Such a commitment
h(z,r) = h(z',')), can be trivially translated into a col- scheme can then be useg to implement coinoﬂipping over the
lision z,2’ under h. Perfect correctness ensures that Phone [6] between aNC™ circuit and anNC™[AND)] cir-

h(z) = h(z') and unique-randomness (see Lemma 4.7) en-Cuit. Moreover, such commitments can also be used to con-
sures thatr # «': also, sinceh and i have the same struct zero-knowledge proof-systems where both the prover
additive stretchi sr;rinks'its input and the verifier are highly parallelized.

A slightly different argument is used for encryption THe case oFPRFs. Itis natural to ask why our machin-
schemes. Suppose thét= (G, E, D) is a public-key en- gry cannot be applied to pseudorandom functions (PRFs), as
cryption scheme, wheré' is a key-generation algorithm,  fojlows from the impossibility results of Linial et al. [24].

the encryption functiot(e, m, ) encrypts the message |y our constructions of randomized encodings, the output
using the key and randomness andD(d, y) decrypts the - 4. .y yagether with the randomnessallows to recover
ciphery using the decryption key. As usual, the functions z; i.e., the encoding loses its privacy. Now, suppose that
G, E, D are polynomial-time computable, and the scheme ' ppe family fy(x) = f(k,z) is encoded as the family
provides correct decryption and satisfies indistinguishabil-f (2,7 = f(k: ’ ) THe a’dversar can recovkrby ob-
ity of encryptions [14]. LetZ be a randomized encoding °* LT) = T\ LT ) y - 1oy ©

A\ det N . serving a poin{z, r) along with the value of;, at this point.
of E{ and letD(d, 7) = D(d, C(3)) b-e the composition of More generally, our methodology works well for crypto-
D with the decodelC’ of the encodingE’. We argue that  graphic primitives which employ fresh secret randomness
the scheme’ = (G, E, D) is also a public-key encryp-  for each invocation. PRFs do not fit into this category: while
tion scheme. The efficiency and correctness’alire guar-  the key contains secret randomness, it is not freshly picked
anteed by the uniformity of the encoding and its correct- at each invocation.

ness. Using the efficient simulator of the encoded function

E, we can reduce the security 6f to the security of€; COMPUTATIONALLY-PRIVATE ENCODINGS For the pur-
if some efficient adversaryl’ can break’ by distinguish- ~ pose of most applications discussed above, it suffices to use
ing encryptions ofn; andms, then we can construct an ef- arandomized encoding which offessmputational privacy
ficient adversaryd that breaks the original scherfieby us- rather than a statistical or a perfect one. It turns out that, as-
ing the simulator to transform original ciphers into “new” suming the existence of a PRG IREN, it is possible
ciphers, and then invoké’. to get a such a randomized encodingNa® for arbitrary

Similar constructions can be used for commitments, (polynomial-time computable) functions. This can be done
signatures and MACs. In all these cases, we can re-by combining a variant of Yao'garbled circuitconstruc-
place the sender (i.e., the encrypting party, committing tion [34] with a PRG inNC°. Computationally-private ran-
party or signer, according to the case) with its random- domized encodings maintain the security of cryptographic
ized encoding and let the receiver (the decrypting party or primitives such as public-key encryption, signatures, and
verifier) use the decoding algorithm to translate the out- variants of commitments and zero knowledge proofs. Thus,
put of the new sender to an output of the original one. given arbitrary (polynomial-time) implementations of these
The security of the resulting scheme reduces to the secuprimitives, and assuming that there is a PR®IREN, we
rity of the original one by using the efficient simulator. getimplementations of these primitiveshiC’. Further de-
Note that these transformations can be used to con-tails and additional applications will appear in [3].
struct anNC" sender but they do not promise anything
regarding the parallel complexity of the receiVéfhe sec- .
ond approach mentioned above can be used to get 8- Conclusions and Open Problems
symmetric encryption scheme in which both encryp-
tion and decryption are iNC" by using the output of Our results provide overwhelming evidence for the pos-
sibility of cryptography inNC®. They are also close to opti-

7 Actually, it can be proved that some of these schemes cannot be securemal in terms of the exact locality that can be achieved. Still,
if the receiver is inNC®. several questions are left for further study. In particular:
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