
Cryptography in NC0

(EXTENDED ABSTRACT)∗

Benny Applebaum Yuval Ishai

Computer Science Department, Technion
{abenny,yuvali,eyalk}@cs.technion.ac.il

Eyal Kushilevitz

Abstract

We study the parallel time-complexity of basic crypto-
graphic primitives such as one-way functions (OWFs) and
pseudorandom generators (PRGs). Specifically, we study
the possibility of computing instances of these primitives
by NC0 circuits, in which each output bit depends on a
constant number of input bits. Despite previous efforts in
this direction, there has been no significant theoretical ev-
idence supporting this possibility, which was posed as an
open question in several previous works.

We essentially settle this question by providing over-
whelming positive evidence for the possibility of cryptog-
raphy in NC0. Our main result is that every “moderately
easy” OWF (resp., PRG), say computable inNC1, can
be compiled into a corresponding OWF (resp., low-stretch
PRG) inNC0

4, i.e. whose output bits each depend on at most
4 input bits. The existence of OWF and PRG inNC1 is a rel-
atively mild assumption, implied by most number-theoretic
or algebraic intractability assumptions commonly used in
cryptography. Hence, the existence of OWF and PRG in
NC0 follows from a variety of standard assumptions. A sim-
ilar compiler can also be obtained for other cryptographic
primitives such as one-way permutations, encryption, com-
mitment, and collision-resistant hashing.

The above results leave a small gap between the possi-
bility of cryptography inNC0

4 and the known impossibility
of implementing even OWF inNC0

2. We partially close this
gap by providing evidence for the existence of OWF inNC0

3.
Finally, our techniques can also be applied to obtain un-

conditionally provable constructions of non-cryptographic
PRGs. In particular, we obtainε-biased generators inNC0

3,
resolving an open question posed by Mossel et al. [25], as
well as a PRG for logspace inNC0.

Our results make use of the machinery ofrandomizing
polynomials[19], which was originally motivated by ques-
tions in the domain of information-theoretic secure multi-
party computation.

∗ Supported by grant no. 36/03 from the Israel Science Foundation.

1. Introduction

The efficiency of cryptographic primitives is of both the-
oretical and practical interest. In this work, we consider
the question of minimizing theparallel time-complexity
of basic cryptographic primitives such as one-way func-
tions (OWFs) and pseudorandom generators (PRGs) [7, 33].
Taking this question to an extreme, it is natural to ask if
there are instances of these primitives that can be com-
puted inconstantparallel time. Specifically, the following
fundamental question was posed in several previous works
(e.g., [15, 11, 9, 23, 25]):

Are there one-way functions, or even pseudoran-
dom generators, inNC0?

Recall thatNC0 is the class of functions which can be com-
puted by (a uniform family of) constant-depth circuits with
bounded fan-in. In anNC0 function each bit of the output
depends on a constant number of input bits. We refer to this
constant as theoutput localityof the function and denote by
NC0

c the class ofNC0 functions with localityc.
The above question is qualitatively interesting, since one

might be tempted to conjecture that cryptographic hardness
requires some output bits to depend on many input bits. In-
deed, this view is advocated by Cryan and Miltersen [9],
whereas Goldreich [11] takes an opposite view and sug-
gests a concrete candidate for OWF inNC0. However, de-
spite previous efforts, there has been no significant theoret-
ical evidence supporting either a positive or a negative res-
olution of this question.

1.1. Previous Work

Linial et al. show that pseudorandomfunctionscannot
be computed even inAC0 [24]. However, no such impossi-
bility result is known for PRGs. The existence of PRGs in
NC0 has been recently studied in [9, 25]. Cryan and Mil-
tersen [9] observe that there is no PRG inNC0

2, and prove
that there is no PRG inNC0

3 achieving a superlinear stretch;

namely, one that stretchesn bits to n + ω(n) bits.1 Mos-
sel et al. [25] extend this impossibility toNC0

4. Viola [31]
shows that anAC0 PRG with superlinear stretch cannot
be obtained from a OWF via non-adaptive black-box con-
structions. Negative results for other restricted computation
models appear in [10, 35].

On the positive side, Impagliazzo and Naor [18] con-
struct a (sublinear-stretch) PRG inAC0, relying on an in-
tractability assumption related to the subset-sum problem.
PRG candidates inNC1 (or even TC0) are more abundant,
and can be based on a variety of standard cryptographic as-
sumptions including ones related to the intractability of fac-
toring [29, 13, 21], discrete logarithms [7, 33, 27] and lat-
tice problems [2, 16].2

Unlike the case of pseudorandom generators, the ques-
tion of one-way functions inNC0 is relatively unexplored.
The impossibility of OWFs inNC0

2 follows from the eas-
iness of 2-SAT [11, 9]. H̊astad [15] constructed a family
of permutations inNC0 whose inverses are P-hard to com-
pute. Cryan and Miltersen [9], improving on [1], presented
a circuit family in NC0

3 whose range decision problem is
NP-complete. This, however, gives no evidence of crypto-
graphic strength. Since any PRG is also a OWF, all PRG
candidates cited above are also OWF candidates. (In fact,
the one-wayness of anNC1 function often serves as the un-
derlying cryptographicassumption.) Finally, Goldreich [11]
suggested a candidate OWF inNC0, whose conjectured se-
curity does not follow from any well-known assumption.

1.2. Our Results

As indicated above, the possibility of implementing most
cryptographic primitives inNC0 was left wide open. We
present a positive answer to this basic question, show-
ing that surprisingly many cryptographic tasks can be per-
formed in constant parallel time.

Since the existence of cryptographic primitives implies
that P 6= NP, we cannot expect unconditional results and
have to rely on some unproven assumptions.3 However,
we avoid relying onspecificintractability assumptions. In-
stead, we assume the existence of cryptographic primitives
in a relatively “high” complexity class and transform them
to the seemingly degenerate complexity classNC0 with-
out substantial loss of their cryptographic strength. These
transformations are inherently non-black-box, thus provid-
ing further evidence for the usefulness of non-black-box
techniques in cryptography.

1 From here on, we use a crude classification of PRGs into ones hav-
ing sublinear, linear, or superlinear additive stretch. Note that a PRG
stretching its seed by just one bit can be invokedin parallel to yield a
PRG stretching its seed byn1−ε bits, for an arbitraryε > 0.

2 In some of these constructions it seems necessary to allow acollection
of NC1 PRGs, and use polynomial-time preprocessing to pick (once
and for all) a random instance from this collection. This is similar to
the more standard notion of OWF collection (cf. [12], Section 2.4.2).

3 This is not the case for non-cryptographic PRGs such asε-biased or
logspace generators, for which we do obtain unconditional results.

An overview of the main ideas used for obtaining these
results appears in Section 2. The reader might want to skip
to that section before moving on to the following, more de-
tailed, account of results.

A GENERAL COMPILER. Our main result is that any OWF
(resp., PRG) in a relatively high complexity class, contain-
ing uniform NC1 and even⊕L/poly, can be efficiently
“compiled” into a corresponding OWF (resp., PRG) in
NC0

4. (The class⊕L/poly containsL/poly andNC1 and
is contained inNC2. In a non-uniform setting it also con-
tains NL/poly [32].) The existence of OWF and PRG in
this class is a mild assumption, implied in particular by
most number-theoretic or algebraic intractability assump-
tions commonly used in cryptography. Hence, the existence
of OWF and PRG inNC0 follows from a variety of standard
assumptions and is not affected by the potential weakness
of a particular algebraic structure. A similar compiler can
also be obtained for other cryptographic primitives includ-
ing one-way permutations, encryption, signatures, commit-
ment, and collision-resistant hashing (see Section 7).

It is important to note that theNC0
4 PRG produced by

our compiler will generally have a sublinear additive stretch
even if the original PRG has a large stretch. However, one
cannot do much better, as there is no PRG with superlin-
ear stretch inNC0

4 [25].

OWF WITH OPTIMAL LOCALITY . The above results leave
a small gap between the possibility of cryptography inNC0

4

and the known impossibility of implementing even OWF in
NC0

2. We partially close this gap by providing positive ev-
idence for the existence of OWF inNC0

3. Specifically, we
construct such OWF based on either: (1) the intractability
of decoding a random linear code; or (2) the existence of
a moderately-easy OWF (say, inNC1) that enjoys a cer-
tain strong “robustness” property. We show that a seemingly
conservative variant of a OWF candidate suggested by Gol-
dreich [11] provably satisfies this property, assuming that it
is indeed a OWF. Further details are omitted from this ex-
tended abstract and will appear in the full version.

NON-CRYPTOGRAPHIC GENERATORS. Our techniques can
also be applied to obtain unconditional constructions of
non-cryptographic PRGs. In particular, building on anε-
biased generator inNC0

5 constructed by Mossel et al. [25],
we obtain a linear-stretchε-biased generator inNC0

3. This
generator has optimal locality, answering an open question
posed in [25]. (It is also essentially optimal with respect
to stretch, since locality 3 does not allow for a superlinear
stretch [9].) Our techniques apply also to other types of non-
cryptographic PRGs such as generators for logspace [4, 28],
yielding the first such generators inNC0.

2. Overview of Techniques

Our key observation is that instead of computing a given
“cryptographic” functionf(x), it might suffice to compute
a functionf̂(x, r) having the following relation tof :

1. For every fixed inputx and a uniformly random choice
of r, the output distribution̂f(x, r) forms a “random-
ized encoding” off(x), from whichf(x) can be de-
coded. That is, iff(x) 6= f(x′) then the random
variablesf̂(x, r) and f̂(x′, r′), induced by a uniform
choice ofr, r′, should have disjoint supports.

2. The distribution of this randomized encoding depends
only on the encoded valuef(x) and does not further
depend onx. That is, if f(x) = f(x′) then the ran-
dom variablesf̂(x, r) and f̂(x′, r′) should be identi-
cally distributed. Furthermore, we require that the ran-
domized encoding of an output valuey be efficiently
samplable giveny. Intuitively, this means that the out-
put distribution off̂ on inputx reveals no information
aboutx except what follows fromf(x).

Each of these requirements alone can be satisfied by a trivial
functionf̂ (e.g.,f̂(x, r) = x andf̂(x, r) = 0, respectively).
However, their combination can be viewed as a non-trivial
natural relaxation of the usual notion of computing. In a
sense, the function̂f defines an “information-theoretically
equivalent” representation off . In the following, we refer
to f̂ as arandomized encodingof f .

For this approach to be useful in our context, two con-
ditions should be met. First, we need to argue that a ran-
domized encodinĝf can besecurelyused as a substitute for
f . Second, we hope that this relaxation is sufficientlylib-
eral, in the sense that it allows to efficiently encode rela-
tively complex functionsf by functionsf̂ in NC0. These
two issues are addressed in the following subsections.

2.1. Security of Randomized Encodings

To illustrate how a randomized encodinĝf can inherit
the security features off , consider the case wheref is a
OWF. We argue that the hardness of invertingf̂ reduces to
the hardness of invertingf . Indeed, a successful algorithm
A for invertingf̂ can be used to successfully invertf as fol-
lows: given an outputy of f , apply the efficient sampling
algorithm guaranteed by requirement 2 to obtain a random
encodingŷ of y. Then, useA to obtain a preimage(x, r)
of ŷ underf̂ , and outputx. It follows from requirement 1
thatx is indeed a preimage ofy. Moreover, ify is the im-
age of a uniformly randomx, thenŷ is the image of a uni-
formly random pair(x, r). Hence, the success probability
of invertingf is the same as that of invertinĝf .

The above argument can tolerate some relaxations to the
notion of randomized encoding. In particular, one can re-
lax the second requirement to allow a small statistical vari-
ation of the output distribution. On the other hand, to main-
tain the security of other cryptographic primitives, it may
be required to further strengthen this notion. For instance,
whenf is a PRG, the above requirements do not guaran-
tee that the output of̂f is pseudo-random, or even that its

output is longer than its input. However, by imposing suit-
able “regularity” requirements on the output encoding de-
fined by f̂ , it can be guaranteed that iff is a PRG then so
is f̂ . Thus, different security requirements suggest differ-
ent variations of the above notion of randomized encoding.

2.2. Complexity of Randomized Encodings

It remains to address the second issue: how can we en-
code a complex functionf by anNC0 functionf̂? Our best
solutions to this problem rely on the machinery ofrandom-
izing polynomials,described below. But first, we outline a
simple alternative approach4 based on Barrington’s theo-
rem [5], combined with a randomization technique of Kil-
ian [22].

Supposef is a boolean function inNC1. (Non-boolean
functions are handled by repeating the following procedure
for each bit of the output.) By Barrington’s theorem, evalu-
atingf(x) reduces to computing an iterated product of poly-
nomially many elementss1, . . . , sm from the symmetric
groupS5, where eachsi is determined by a single bit ofx.
Now, let f̂(x, r) = (s1r1, r−1

1 s2r2, . . . , r−1
m−2sm−1rm−1,

r−1
m−1sm), where the random inputsri are picked uniformly

and independently fromS5. It is not hard to verify that the
output(t1, . . . , tm) of f̂ is random subject to the constraint
that t1t2 · · · tm = s1s2 · · · sm, where the latter product is
in one-to-one correspondence tof(x). It follows that f̂ is
a randomized encoding off . Moreover,f̂ has constant lo-
cality when viewed as a function over the alphabetS5, and
thus yields the qualitative result we are after. Still, this con-
struction falls short of providing a randomized encoding in
NC0, since it is impossible to sample a uniform element
of S5 in NC0 (even up to a negligible statistical distance).
Also, thisf̂ does not satisfy the properties required by more
“sensitive” primitives such as PRGs or one-way permuta-
tions. The solutions presented next avoid these disadvan-
tages and, at the same time, apply to a higher complexity
class thanNC1 and achieve a very small constant locality.

RANDOMIZING POLYNOMIALS . The concept of randomiz-
ing polynomials was introduced in [19] as a representation
of functions by vectors of low-degree multivariate polyno-
mials. (Interestingly, this concept was motivated by ques-
tions in the area ofinformation-theoreticsecure multiparty
computation, which seems unrelated to the current con-
text.) Randomizing polynomials capture the above encod-
ing question within an algebraic framework. Specifically, a
representation off(x) by randomizing polynomials is a ran-
domized encodinĝf(x, r) as defined above, in whichx and
r are viewed as vectors over a finite fieldF and the out-
puts of f̂ as multivariate polynomials in the variablesx, r.
In this work, we will always letF = GF(2).

4 In fact, a modified version of this approach has been applied for con-
structing randomizing polynomials in [8].

The most crucial parameter of a randomizing polynomi-
als representation is its algebraicdegree, defined as the max-
imal (total) degree of the outputs as a function of the input
variablesx, r. (Note that bothx andr count towards the de-
gree.) Itscomplexityis measured as the total number of in-
puts and outputs. Quite surprisingly, it is shown in [19, 20]
that every boolean functionf : {0, 1}n → {0, 1} admits a
representation bydegree-3randomizing polynomials whose
complexity is at most quadratic in its branching program
size.5 (Moreover, this degree bound is tight in the sense that
most boolean functions do not admit a degree-2 representa-
tion.) Note that a representation of a non-boolean function
can be obtained by concatenating representations of its out-
put bits, using independent blocks of random inputs. This
concatenation leaves the degree unchanged.

The above positive result implies that functions whose
output bits can be computed in the complexity class
⊕L/poly admit an efficient representation by degree-3 ran-
domizing polynomials. This also holds if one requires the
most stringent notion of representation required by our ap-
plications. We note, however, that different constructions
from the literature [19, 20, 8] are incomparable in terms
of their exact efficiency and the security-preserving fea-
tures they satisfy. Hence, different constructions may be
suitable for different applications. These issues are dis-
cussed in Section 4.

DEGREE VS. LOCALITY. Combining our general method-
ology with the above results on randomizing polynomials
already brings us close to our goal, as it enables “degree-
3 cryptography”. Taking on from here, we show that any
functionf : {0, 1}n → {0, 1}m of algebraic degreed ad-
mits an efficient randomized encodinĝf of degreed and lo-
cality d + 1. That is, each output bit of̂f can be computed
by a degree-d polynomial overGF(2) depending on at most
d + 1 inputs and random inputs. Combined with the previ-
ous results, this allows us to make the final step from degree
3 to locality 4.

Paper organization.Following some preliminaries (Sec-
tion 3), in Section 4 we formally define our notion of ran-
domized encoding and discuss some of its variants, prop-
erties, and constructions. In Section 5 we apply random-
ized encodings to construct OWFs inNC0 and in Section 6
we do the same for cryptographic and non-cryptographic
PRGs. Finally, in Section 7 we discuss extensions to other
cryptographic primitives, and in Section 8 we conclude with
some further research directions. For lack of space, some
proofs were omitted from this version.

5 By default, “branching programs” refer here to mod-2 branching pro-
grams, which output the parity of the number of accepting paths. See
Section 3.

3. Preliminaries

Probability notation.Let Un denote a random variable that
is uniformly distributed over{0, 1}n. Different occurrences
of Un are independent. Thestatistical distancebetween
discrete probability distributionsY and Y ′ is defined as
SD(Y, Y ′) def= 1

2

∑
y |Pr[Y = y] − Pr[Y ′ = y]|. A func-

tion ε(·) is said to benegligible if ε(n) < n−c for any
c > 0 and sufficiently largen. For two distribution ensem-
blesY = {Yn} andY ′ = {Y ′

n}, we writeY ≡ Y ′ if Yn and
Y ′

n are identically distributed, andY
s≈ Y ′ if the two ensem-

bles are statistically indistinguishable, namelySD(Yn, Y ′
n)

is negligible inn.

Branching programs.A branching program (BP) is defined
by a tupleBP = (G, φ, s, t), whereG = (V, E) is a di-
rected acyclic graph,φ is a labeling function assigning each
edge a a positive literalxi, a negative literal̄xi or the con-
stant 1, ands, t are two distinguished nodes ofG. Thesize
of BP is the number of nodes inG. Each input assignment
w = (w1, . . . , wn) naturally induces an unlabeled subgraph
Gw, whose edges include alle ∈ E such thatφ(e) is sat-
isfied by w. BPs may be assigned different semantics: in
a non-deterministicBP, an inputw is accepted ifGw con-
tains at least one path froms to t; in a mod-p BP, w is ac-
cepted if the number of such paths is nonzero modulop. In
this work, we will mostly be interested in mod-2 BPs.

Function families and representations.We associate with a
functionf : {0, 1}∗ → {0, 1}∗ a function family{fn}n∈N,
wherefn is the restriction off to n-bit inputs. We assume
all functions to be length regular, namely their output length
depends only on their input length. Hence, we may write
fn : {0, 1}n → {0, 1}l(n). We will represent functionsf
by families of circuits, branching programs, or polynomial
vectors. Wheneverf is taken from a uniform class, we as-
sume that its representation is uniform as well. That is, the
representation offn is generated in time poly(n) and in par-
ticular is of polynomial size. We will often abuse notation
and writef instead offn even when referring to a func-
tion onn bits.

Locality and degree.We say thatf is c-local if each of its
output bits depends on at mostc input bits. The non-uniform
classNC0

c includes allc-local functions. We will sometimes
view the binary alphabet as the finite fieldF = GF(2),
and say that a functionf has degreed if each of its out-
puts can be expressed as a multivariate polynomial of de-
gree (at most)d in the inputs.

Complexity classes.For brevity, we assume all complexity
classes to be polynomial-time uniform by default. For in-
stance,NC0 refers to the class of functions admitting uni-
form NC0 circuits. We letNL/poly (resp.,⊕L/poly) de-
note the class of boolean functions computed by a uniform
family of nondeterministic (resp., modulo-2) BPs. Equiva-
lently, these are the classes of functions computed byNL
(resp.,⊕L) Turing machines taking a uniform advice. We

extend boolean complexity classes, such asNL/poly and
⊕L/poly, to include non-boolean functions by letting the
representation includel(n) branching programs, one for
each output. Uniformity requires that thel(n) branching
programs be all generated in time poly(n).

4. Randomized Encodings of Functions

We now formally introduce our notion of randomized
encoding, discuss some of its variants and properties, and
present constructions of randomized encodings inNC0.

4.1. Definitions

Definition 4.1 (Randomized encoding)Letf : {0, 1}n →
{0, 1}l be a function. We say that a function̂f : {0, 1}n ×
{0, 1}m → {0, 1}s is aδ-correct,ε-privaterandomized en-
codingof f , if it satisfies the following:

• δ-correctness.There exists a (possibly randomized)
algorithm C, called adecoder, such that for any in-
putx ∈ {0, 1}n, Pr[C(f̂(x,Um)) 6= f(x)] ≤ δ.

• ε-privacy. There exists a randomized algorithmS,
called a simulator, such that for anyx ∈ {0, 1}n,
SD(S(f(x)), f̂(x,Um)) ≤ ε.

We refer to the second input of̂f as itsrandom input.

On uniform randomized encodings.The above definition
naturally extends to functionsf : {0, 1}∗ → {0, 1}∗. In
this case, the parametersl, m, s, δ, ε are all viewed as func-
tions of the input lengthn, and the algorithmsC, S receive
1n as an additional input. In our default uniform setting,
we require thatf̂n, the encoding offn, be computable in
time poly(n) (given x ∈ {0, 1}n and r ∈ {0, 1}m(n)).
Thus, in this setting bothm(n) ands(n) are polynomial.
We also require both the decoder and the simulator to run
in probabilistic polynomial time. (This is not needed by
some of the applications, but is a feature of our construc-
tions.) Finally, we will sometimes vieŵf as a function of
a single input of lengthn + m(n) (e.g., when using it as
OWF or PRG). In this case, we requirem(·) to be mono-
tone (so thatn + m(n) uniquely determinesn), and ap-
ply a standard padding technique for definingf̂ on inputs
whose length is not of the formn + m(n). Specifically, if
n + m(n) + k < (n + 1) + m(n + 1) we definef̂ on in-
puts of lengthn + m(n) + k by paddingf̂n with k addi-
tional input bits and adding these bits to the output off̂n.
The above conventions will be implicit in the following.

We move on to discuss some variants of the basic def-
inition. Correctness (resp., privacy) can be eitherperfect,
whenδ = 0 (resp.ε = 0), or statistical, whenδ(n) (resp.
ε(n)) is negligible. While for some of the primitives (such
as OWF) statistical privacy and correctness will do, oth-
ers require even stronger properties than perfect correctness

and privacy. We say that an encoding isbalancedif it ad-
mits a perfectly private simulatorS such thatS(Ul) ≡ Us.
SuchS will be referred to as abalanced simulator. We say
that the encoding isstretch preservingif f̂ has the same ad-
ditive stretch asf ; namely,s− (n + m) = l− n or equiva-
lently s = l + m. We are now ready to define our two main
variants of randomized encoding.

Definition 4.2 (Statistical randomized encoding)A sta-
tistical randomized encodingis a randomized encoding
which is statistically correct and private.

Definition 4.3 (Perfect randomized encoding)A perfect
randomized encoding is a randomized encoding which
is perfectly correct and private, balanced, and stretch-
preserving.

A perfect randomized encoding guarantees the existence
of a perfect simulatorS whose2l output distributions form
a perfect tiling of the space{0, 1}s by tiles of size2m.

Finally, we define two complexity classes that capture
the power of randomized encodings inNC0.

Definition 4.4 (The classes SREN, PREN)The class
SREN (resp.,PREN) is the class of functions admit-
ting statistical (resp., perfect) randomized encoding in
NC0.

4.2. Basic Properties

We now put forward some useful properties of random-
ized encodings, which are stated here without a proof. We
first argue that an encoding of a non-boolean function can
be obtained by concatenating encodings of its output bits,
using an independent random input for each bit. The result-
ing encoding inherits all the features of the concatenated en-
codings. Thus, the following lemma applies to both the sta-
tistical and the perfect cases.

Lemma 4.5 (Concatenation)Let f (i) : {0, 1}n → {0, 1},
1 ≤ i ≤ l, be the boolean functions computing the out-
put bits of f : {0, 1}n → {0, 1}l. If f̂ (i)(x, r(i)) is a
randomized encoding off (i)(x), then the concatenation
f̂(x, (r(1), . . . , r(l))) def= (f̂ (1)(x, r(1)), . . . , f̂ (l)(x, r(l))) is
a randomized encoding off .

When applying the above lemma in a uniform setting, we
assume thatl(n) = poly(n) and that the familŷf (i)

n is uni-
form both inn andi.

Another useful feature of randomized encodings is the
following intuitive composition property: suppose we en-
codef by g, and then viewg as a deterministic function and
encode it again. Then, the resulting function (parsed appro-
priately) is a randomized encoding off . Again, the follow-
ing lemma applies to all variants of randomized encoding.

Lemma 4.6 (Composition) Let g(x, r) be a randomized
encoding off(x) andh((x, r), r′) a randomized encoding
of g(x, r). Then,h is a randomized encoding off whose
random inputs are(r, r′).

Finally, we state two useful features of aperfectencod-
ing.

Lemma 4.7 (Unique randomness)Supposêf is a perfect
randomized encoding off . Then,f̂ satisfies the following
unique randomnessproperty: for any inputx, the function
f̂(x, ·) is injective, namely there are no distinctr, r′ such
that f̂(x, r) = f̂(x, r′). Moreover, iff is a permutation
then so isf̂ .

4.3. Constructions

In this section we construct randomized encodings in
NC0. We first review a construction from [20] of degree-
3 randomizing polynomials based on mod-2 branching pro-
grams and analyze some of its properties. Then, we apply a
general locality reduction technique, allowing to transform
a degree-d encoding to a(d + 1)-local encoding.

DEGREE-3 RANDOMIZING POLYNOMIALS FROM MOD-
2 BRANCHING PROGRAMS [20]. Let BP = (G, φ, s, t)
be a mod-2 BP of size`, computing a boolean function
f : {0, 1}n → {0, 1}. Fix some topological ordering of
the vertices ofG, where the source vertexs is labeled1 and
the terminal vertext is labeled`. For any inputx, let Ax

be the` × ` adjacency matrix ofGx, viewed as a matrix
over GF(2). DefineL(x) as the submatrix ofAx − I ob-
tained by deleting columns and rowt (i.e., the first column
and the last row). Each entry ofL(x) is a degree-1 poly-
nomial in a single input variablexi; moreover,L(x) con-
tains the constant−1 in each entry of its second diagonal
(the one below the main diagonal) and the constant0 be-
low this diagonal.

Fact 4.8 ([20]) f(x) = det(L(x)).

Let r(1) andr(2) be vectors overGF(2) of length
(
`−1
2

)

and`−2 respectively. LetR1(r(1)) be an(`−1)×(`−1) ma-
trix with 1’s on the main diagonal,0’s below it, andr(1)’s
elements in the remaining

(
`−1
2

)
entries above the diago-

nal (a unique element ofr(1) is assigned to each matrix en-
try). Let R2(r(2)) be an(` − 1) × (` − 1) matrix with 1’s
on the main diagonal,r(2)’s elements in the rightmost col-
umn, and0’s in each of the remaining entries.

Fact 4.9 ([20]) Let M, M ′ be (` − 1) × (` − 1) matrices
that contain the constant−1 in each entry of their sec-
ond diagonal and the constant0 below this diagonal. Then,
det(M1) = det(M2) if and only if there existr(1) andr(2)

such thatR1(r(1))MR2(r(2)) = M ′.

Lemma 4.10 (implicit in [20]) Let BP andf be as above.
Define a degree-3 function̂f(x, (r(1), r(2))) whose outputs
contain the

(
`
2

)
entries on or above the main diagonal of the

matrixR1(r(1))L(x)R2(r(2)). Then,f̂ is a perfect random-
ized encoding off .

Proof: We start by describing the simulator and decoder
algorithms. Given an output of̂f , representing a matrixM ,
the decoderC simply outputsdet(M). (Note that the en-
tries below the main diagonal of this matrix are constants
and therefore are not included in the output off̂ .) The sim-
ulatorS, on inputy ∈ {0, 1}, outputs the

(
`
2

)
entries on and

above the main diagonal of the matrixR1(r(1))HyR2(r(2)),
wherer(1), r(2) are randomly chosen, andHy is the(` −
1) × (` − 1) matrix that contains−1’s in its second diago-
nal,y in its top-right entry, and0’s elsewhere. The perfect-
ness of theC, S follows from Facts 4.8, 4.9; for a detailed
proof the reader is referred to [20].

We now prove the other properties of a perfect encoding
that are not explicit in [20]. The length of the random input
of f̂ is m =

(
`−1
2

)
+ `−2 =

(
`
2

)−1 and its output length is
s =

(
`
2

)
. Thus we haves = m + 1, and sincef is a boolean

function its encodinĝf preserves its stretch.
It remains to show that̂f is balanced. It follows from

Fact 4.9 and the description ofS that the support ofS(b),
b ∈ {0, 1}, includes all strings in{0, 1}s representing ma-
trices with determinantb. Hence,S(0) andS(1) cover the
entire space{0, 1}s. Since we have already shown̂f to be
stretch-preserving, the simulatorS must be balanced.

REDUCING THE LOCALITY. It remains to convert the
degree-3 encoding into one inNC0. To this end, we show
how to construct for any degree-d function (whered is con-
stant) a(d + 1)-local perfect encoding. Using the com-
position lemma, we can obtain anNC0 encoding of a
function by first encoding it as a constant-degree func-
tion, and then applying the locality construction.

The idea for the locality construction is to represent a
degree-d polynomial as a sum of monomials, each having
locality d, and randomize this sum using a variant of the
method for randomizing group product, described in Sec-
tion 2.2. (A direct use of the latter method over the group
Z2 gives a(d + 2)-local encoding instead of the(d + 1)-
local one obtained here.)

Construction 4.11 (Locality construction) Let f(x) =
T1(x) + . . . + Tk(x), where summation is overGF(2). The
local encodingf̂ is defined by:

f̂(x, (r1, . . . , rk, r′1, . . . , r
′
k−1))

def
=

(T1(x)− r1, T2(x)− r2, . . . , Tk(x)− rk,
r1 − r′1, r

′
1 + r2 − r′2, . . . , r

′
k−2 + rk−1 − r′k−1, r

′
k−1 + rk).

Lemma 4.12 (Locality lemma) Letf and f̂ be as in Con-
struction 4.11. Then,̂f is a perfect randomized encoding of
f . In particular, if f is a degree-d polynomial written as the
sum of monomials, then̂f is a perfect encoding off with de-
greed and localitymax(d + 1, 3).

Proof: Sincem = 2k − 1 ands = 2k, f̂ is stretch pre-
serving. Moreover, it is easy to verify that the outputs add
up tof(x). It thus suffices to show that the outputs off̂(x)

are uniformly distributed subject to the constraint that they
add up tof(x). This follows by observing that, for anyx
and any assignmenty ∈ {0, 1}2k−1 to the first2k − 1 out-
puts off̂(x), there is a unique way to set the random inputs
ri, r

′
i so that the output of̂f(x, (r, r′)) is consistent withy.

Indeed, for1 ≤ i ≤ k, the values ofx, yi uniquely deter-
mineri. For1 ≤ i ≤ k − 1, the valuesyk+i, ri, r

′
i−1 deter-

miner′i. (wherer′0
def= 0).

Combining the degree-3 construction of Lemma 4.10 to-
gether with the locality lemma (4.12), composition
lemma (4.6), and concatenation lemma (4.5), we get the
main theorem of this section.

Theorem 4.13⊕L/poly ⊆ PREN . Moreover, anyf ∈
PREN admits a perfect randomized encoding inNC0

4.

Remark 4.14 A more direct approach for perfect random-
ized encodings inNC0 is possible using a randomizing
polynomials construction from [20], which is based on an
information-theoretic variant of Yao’s garbled circuit tech-
nique [34]. This construction directly gives an encoding
with (large) constant locality for functions inNC1.

There are variants of the above construction that can han-
dle non-deterministic branching programs as well, at the ex-
pense of losing perfectness [19, 20]. Thus, we get the fol-
lowing theorem, whose proof is deferred to the full version.

Theorem 4.15 NL/poly ⊆ SREN . Moreover, anyf ∈
SREN admits a statistical randomized encoding inNC0

4.

5. One-Way Functions inNC0

A one-way function(OWF) f : {0, 1}∗ → {0, 1}∗ is a
polynomial-time computable function that is hard to invert;
namely, every polynomial time algorithm that tries to in-
vertf onf(x), wherex is picked fromUn, succeeds with a
negligible probability. In the following, we show that a ran-
domized encodinĝf of a OWFf is also a OWF. The idea, as
described in Section 2.1, is to argue that the hardness of in-
verting f̂ reduces to the hardness of invertingf . Here, we
will further formalize this claim and slightly strengthen it.
We start with a technical claim.

Claim 5.1 Let f̂ : {0, 1}n × {0, 1}m → {0, 1}s be a
perfectly private (resp., statistically private) randomized
encoding off : {0, 1}n → {0, 1}l, and let S be its
perfect (resp., statistical) simulator. ThenS(f(Un)) ≡
f̂(Un, Um(n)) (resp.,S(f(Un))

s≈ f̂(Un, Um(n))).

Lemma 5.2 Suppose thatf : {0, 1}∗ → {0, 1}∗ is hard to
invert andf̂(x, r) is a perfectly-correct, statistically-private
(uniform) encoding off . Thenf̂ , viewed as a deterministic
function, is also hard to invert.

Proof: Let s = s(n),m = m(n) be the lengths of the
output and random input of̂f respectively. We prove that̂f
is as “hard to invert” asf . Assume, towards a contradiction,

that there is an efficient algorithmB invertingf̂n(x, r) with
success probabilityφ(n + m) > 1

q(n+m) for some polyno-
mial q(·) and infinitely manyn’s. We useB to construct an
efficient algorithmA that invertsf with similar success. On
input (1n, y = f(Un)), the algorithmA runsS, the statis-
tical simulator off̂n, on the inputy and gets a strinĝy as
S’s output.A proceeds by running the inverterB on the in-
put(1n+m, ŷ), getting(x, r) asB’s output (i.e.,B “claims”
that f̂n(x, r) = ŷ). A terminates with outputx.

COMPLEXITY: sinceS andB are both polynomial-time al-
gorithms, and sincem(n) is polynomially bounded, it fol-
lows thatA is also a polynomial-time algorithm.

CORRECTNESS: Observe that, by perfect correctness, if
f(x) 6= f(x′) then the setŝf(x,Um) and f̂(x′, Um) are
disjoint. Hence, ifB succeeds (that is, indeed̂y = f̂n(x, r))
then so doesA (namely,f(x) = y). Next, observe that by
Claim 5.1 the input̂y on whichA runsB is ε(n)-close to
f̂n(Un, Um(n)), and thereforeB succeeds with probability
≥ φ(n + m)− ε(n). Formally, we can write:

Pr
x∈Un

[A(1n, f(x)) ∈ f−1(f(x))]

= Pr
x∈Un,ŷ∈S(f(x))

[B(1n+m, ŷ) ∈ f̂−1(ŷ)]

≥ Pr
x∈Un,r∈Um(n)

[B(1n+m, f̂n(x, r)) ∈ f̂−1(f̂(x, r))]− ε(n)

≥ φ(n + m)− ε(n) >
1

q(n + m)
− ε(n) >

1

q′(n)
,

whereq′(n) is a polynomial. It follows thatf is not a one-
way function, in contradiction to the hypothesis.

The perfect correctness of̂f is essential for Lemma 5.2
to hold. In the full version we show that even iff̂ is only sta-
tistically correct, it is stilldistributionallyone-way [17]. In
this case, one can apply a standard transformation (cf. [12],
p. 96) to convert a distributionally OWF̂f in NC0 to a OWF
f̂ ′ in NC1, and then encode the latter by a OWF inNC0.
Based on the above, we get:

Theorem 5.3 A OWF inSREN (in particular, in⊕L/poly
or NL/poly) implies a OWF inNC0

4.

Combining Lemma 5.2 and Lemma 4.7, we get a similar
result for one-way permutations.

Theorem 5.4 A one-way permutation inPREN (in par-
ticular, in⊕L/poly) implies one inNC0

4.

A NOTE CONCERNING EFFICIENCY. Loosely speaking, the
main security loss in the reduction follows from the expan-
sion of the input. (The simulator’s running time has a mi-
nor effect on the security, since it is added to the overall
running-time of the adversary.) Thus, to achieve a similar
level of security to that achieved by applyingf onn-bit in-
puts, one would need to applŷf onn + m(n) bits (the ran-
dom input part of the encoding does not contribute to the se-
curity). Going through our constructions (bit-by-bit encod-
ing of the output, based on some size-`(n) BPs, followed by

the locality reduction), we getm(n) = l(n) ·poly(`), where
l(n) is the output length off . Some more efficient alterna-
tives will be discussed in the full version.

6. Pseudorandom Generators inNC0

A pseudorandom generatoris an efficiently computable
function G : {0, 1}n → {0, 1}l(n) such that: (1)G has a
positive stretch, namelyl(n) > n; (2) any “computationally
bounded” algorithmD, called adistinguisher, has a negligi-
ble advantage in distinguishingG(Un) from Ul(n). That is,
|Pr[D(1n, G(Un)) = 1] − Pr[D(1n, Ul(n)) = 1]| is negli-
gible inn.

Different notions of PRGs differ mainly in the computa-
tional bound imposed onD. In the default case ofcrypto-
graphicPRGs,D can be any probabilistic polynomial-time
algorithm (alternatively, polynomial-size circuit family). In
the case ofε-biasedgenerators,D can only compute a linear
function of the output bits, namely the exclusive-or of some
subset of the bits. Other types of PRGs, e.g. for logspace
computation, have also been considered.

We show that aperfectrandomized encoding of a PRG
is also a PRG. We start by proving this claim for crypto-
graphic PRGs and then obtain a similar result forε-biased
generators. The discussion of generators for logspace is de-
ferred to the full version.

6.1. Cryptographic Generators

Lemma 6.1 If G : {0, 1}n → {0, 1}l is a PRG and
Ĝ : {0, 1}n × {0, 1}m → {0, 1}s is a (uniform) perfect
randomized encoding ofG, thenĜ is also a PRG.

Proof sketch: SinceĜ has the same additive stretch as
G, it is guaranteed to expand its seed. To prove the pseudo-
randomness of its output, we again use a reducibility argu-
ment. Given a distinguisher̂D betweenUs andĜ(Un, Um),
we obtain a distinguisherD betweenUl andG(Un) as fol-
lows. On inputy ∈ {0, 1}l, run the balanced simulator of̂G

ony, and invokeD̂ on the result̂y. If y is taken fromUl then
the simulator, being balanced, outputsŷ that is distributed
asUs; if y is taken fromG(Un) then, by Claim 5.1, the out-
put of the simulator is distributed aŝG(Un, Um). Thus, the
distinguisherD we get forG has the same advantage as the
distinguisherD̂ for Ĝ. Sincem(n) is polynomial inn, this
advantage is negligible also inn + m.

Thus, we get:

Theorem 6.2 A pseudorandom generator inPREN (in
particular, in⊕L/poly) implies one inNC0

4.

We stress that theNC0
4 PRGĜ one gets from our con-

struction has a sublinear stretch even ifG has a large stretch.
This follows from the fact that the lengthm(n) of the ran-
dom input is superlinear in the input lengthn.

Remark 6.3 The transformation of OWF to PRG from [16]
(Construction 7.1) involves only the computation of univer-
sal hash functions and hard-core bits in the case that the “en-
tropy” of the OWF is known (e.g., if the OWF is regular).
In this case, anNC1 OWF can be transformed into anNC1

PRG.6 Combined with Theorems 5.3, 6.2, this yields a PRG
in NC0

4 based on regular OWF inSREN (alternatively, a
PRG in nonuniform-NC0

4 from any OWF inSREN).

6.2. ε-Biased Generators

The proof of Lemma 6.1 uses the balanced simulator to
transform a challenge forG into a challenge for̂G. If this
transformation can be made linear, then the security reduc-
tion goes through also in the case ofε-biased generators.

Lemma 6.4 Let G be anε-biased generator and̂G a per-
fect randomized encoding ofG. Assume that the balanced
simulator ofĜ is linear in the sense that it outputs a ran-
domized linear transformation ofG(x) (which is not nec-
essarily a linear function of the simulator’s randomness).
Then,Ĝ is also anε-biased generator.

Proof sketch: The proof is similar to that of Lemma 6.1.
By an averaging argument and by the linearity of the simu-
lator, it follows that a linear distinguisher for̂G can be trans-
formed into a (nonuniform) linear distinguisher forG.

Mossel et al. present anε-biased generator in nonuni-
form NC0

5 with degree2 and a linear stretch ([25], Theo-
rem 14). Since this generator is already inNC0, applying
the locality reduction keeps the stretch linear. Using Lem-
mas 4.12,6.4 we thus get:

Theorem 6.5 There is a linear-stretchε-biased generator
in nonuniformNC0

3.

One can also apply the locality reduction to get a uni-
form NC0

3 generator from theε-biased generatorG(x1, . . . ,
x2n) = (x1, . . . , x2n, x1x2 + . . . + x2n−1x2n) (cf. [30]).
However, the resulting generator will have sublinear stretch.
Using our general encoding machinery, one can transform
an arbitrary uniformNC0 generator withlinear stretch (if
such exists) into one inNC0

4.

7. Other Cryptographic Primitives

We now outline some extensions of our results to other
cryptographic primitives. Aiming atNC0 implementations,
we can use our machinery in two different ways: (1) com-
pile a primitive in a relatively high complexity class (say
NC1) into its randomized encoding and show that the en-
coding inherits the security properties of this primitive; (2)
use known reductions between cryptographic primitives to-
gether withNC0 primitives we construct (e.g., OWF or

6 Viola [31] obtains a similar result forAC0. Our techniques allow to
further reduce the complexity of this reduction toNC0.

PRG) to obtain newNC0 primitives. We mainly adopt the
first approach, since most of the known reductions between
primitives are not inNC0. Moreover, using the first ap-
proach, we can start by reducing one primitive to another
andthenapply our machinery. (Still, below we give an ex-
ample for the usefulness of the second approach.)

We first consider the case of collision-resistant hash-
ing. Suppose that a collection of functionsh is collision-
resistant, and let̂h be a perfect randomized encoding
of h. Then, ĥ is also collision-resistant since any colli-
sion (x, r), (x′, r′) under ĥ (that is, (x, r) 6= (x′, r′) and
ĥ(x, r) = ĥ(x′, r′)), can be trivially translated into a col-
lision x, x′ under h. Perfect correctness ensures that
h(x) = h(x′) and unique-randomness (see Lemma 4.7) en-
sures thatx 6= x′; also, sinceh and ĥ have the same
additive stretch,̂h shrinks its input.

A slightly different argument is used for encryption
schemes. Suppose thatE = (G,E,D) is a public-key en-
cryption scheme, whereG is a key-generation algorithm,
the encryption functionE(e,m, r) encrypts the messagem
using the keye and randomnessr, andD(d, y) decrypts the
ciphery using the decryption keyd. As usual, the functions
G, E, D are polynomial-time computable, and the scheme
provides correct decryption and satisfies indistinguishabil-
ity of encryptions [14]. LetÊ be a randomized encoding
of E, and letD̂(d, ŷ) def= D(d, C(ŷ)) be the composition of
D with the decoderC of the encodingÊ. We argue that
the schemeE ′ def= (G, Ê, D̂) is also a public-key encryp-
tion scheme. The efficiency and correctness ofE ′ are guar-
anteed by the uniformity of the encoding and its correct-
ness. Using the efficient simulator of the encoded function
Ê, we can reduce the security ofE ′ to the security ofE ;
if some efficient adversaryA′ can breakE ′ by distinguish-
ing encryptions ofm1 andm2, then we can construct an ef-
ficient adversaryA that breaks the original schemeE by us-
ing the simulator to transform original ciphers into “new”
ciphers, and then invokeA′.

Similar constructions can be used for commitments,
signatures and MACs. In all these cases, we can re-
place the sender (i.e., the encrypting party, committing
party or signer, according to the case) with its random-
ized encoding and let the receiver (the decrypting party or
verifier) use the decoding algorithm to translate the out-
put of the new sender to an output of the original one.
The security of the resulting scheme reduces to the secu-
rity of the original one by using the efficient simulator.
Note that these transformations can be used to con-
struct anNC0 sender but they do not promise anything
regarding the parallel complexity of the receiver.7 The sec-
ond approach mentioned above can be used to get a
symmetric encryption scheme in which both encryp-
tion and decryption are inNC0 by using the output of

7 Actually, it can be proved that some of these schemes cannot be secure
if the receiver is inNC0.

an NC0 PRG to mask the plaintext. However, the result-
ing scheme is severely limited by the low stretch of our
PRGs.

An interesting feature of the case of commitment is that
we can also improve the complexity at the receiver’s end; in-
deed, the sender can decommit by sending its random coins,
and the receiver needs only to emulate the computation of
the sender and compare it with the message it received in the
commit stage. Thus, the receiver can be implemented as an
NC0 circuit with a single unbounded fan-in AND gate (we
denote such a circuit asNC0[AND]). Such a commitment
scheme can then be used to implement coin flipping over the
phone [6] between anNC0 circuit and anNC0[AND] cir-
cuit. Moreover, such commitments can also be used to con-
struct zero-knowledge proof-systems where both the prover
and the verifier are highly parallelized.

THE CASE OFPRFS. It is natural to ask why our machin-
ery cannot be applied to pseudorandom functions (PRFs), as
follows from the impossibility results of Linial et al. [24].
In our constructions of randomized encodings, the output
f̂(x, r) together with the randomnessr allows to recover
x; i.e., the encoding loses its privacy. Now, suppose that
a PRF familyfk(x) = f(k, x) is encoded as the family
f̂k(x, r) = f̂(k, x, r). The adversary can recoverk by ob-
serving a point(x, r) along with the value of̂fk at this point.
More generally, our methodology works well for crypto-
graphic primitives which employ fresh secret randomness
for each invocation. PRFs do not fit into this category: while
the key contains secret randomness, it is not freshly picked
at each invocation.

COMPUTATIONALLY-PRIVATE ENCODINGS. For the pur-
pose of most applications discussed above, it suffices to use
a randomized encoding which offerscomputational privacy
rather than a statistical or a perfect one. It turns out that, as-
suming the existence of a PRG inPREN , it is possible
to get a such a randomized encoding inNC0 for arbitrary
(polynomial-time computable) functions. This can be done
by combining a variant of Yao’sgarbled circuitconstruc-
tion [34] with a PRG inNC0. Computationally-private ran-
domized encodings maintain the security of cryptographic
primitives such as public-key encryption, signatures, and
variants of commitments and zero knowledge proofs. Thus,
given arbitrary (polynomial-time) implementations of these
primitives, and assuming that there is a PRG inPREN , we
get implementations of these primitives inNC0. Further de-
tails and additional applications will appear in [3].

8. Conclusions and Open Problems

Our results provide overwhelming evidence for the pos-
sibility of cryptography inNC0. They are also close to opti-
mal in terms of the exact locality that can be achieved. Still,
several questions are left for further study. In particular:

• What are the minimal assumptions required for cryp-
tography inNC0? For instance, does the existence of
an arbitrary OWF imply the existence of OWF inNC0?

• Is there a PRG with linear stretch or even superlinear
stretch inNC0? In particular, is there a PRG with lin-
ear stretch inNC0

4? (The possibility of PRG with su-
perlinear stretch inNC0

4 is ruled out in [25].)

• Can the existence of OWF (or PRG) inNC0
3 be based

on more general assumptions?

• Can our paradigm for achieving better parallelism be
of any practical use?

The above questions motivate a closer study of the complex-
ity of randomized encodings, which so far was only moti-
vated by questions in the domain of secure multiparty com-
putation.

Acknowledgments.We are grateful to Oded Goldreich for
many useful suggestions and comments that helped improve
this writeup. We also thank Emanuele Viola for sending us
an early manuscript of [31] and for sharing with us some of
his insights about constructing PRGs from OWFs.

References

[1] M. Agrawal, E. Allender, and S. Rudich. Reductions in cir-
cuit complexity: An isomorphism theorem and a gap theo-
rem. J. Comput. Syst. Sci., 57(2):127–143, 1998.

[2] M. Ajtai. Generating hard instances of lattice prob-
lems. Electronic Colloquium on Computational Complex-
ity (ECCC), 3(7), 1996. Preliminary version in STOC ’96.

[3] B. Applebaum, Y. Ishai, and E. Kushilevitz. Manuscript in
preparation.

[4] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols
and logspace-hard pseudorandom sequences. InProc. 21st
STOC, pp. 1–11, 1989.

[5] D.A. Mix Barrington. Bounded-width polynomial-size
branching programs recognize exactly those languages in
NC1. J. Comput. Syst. Sci., 38(1):150-164, 1989. Prelimi-
nary version in STOC ’86.

[6] M. Blum. Coin flipping by telephone: A protocol for solving
impossible problems.SIGACT News, 15(1):23–27, 1983.

[7] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits.SIAM J. on Com-
puting, Vol. 13, 1984, pp. 850-864, 1984. Preliminary ver-
sion in FOCS 82.

[8] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient
multi-party computation over rings. InProc. EUROCRYPT
’03, pp. 596–613, 2003. Full version on ePrint Archives.

[9] M. Cryan and P. B. Miltersen. On pseudorandom generators
in NC0. In Proc. 26th MFCS, pp. 272–284, 2001.

[10] A. V. Goldberg, M. Kharitonov, and M. Yung. Lower bounds
for pseudorandom number generators. InProc. 30th FOCS,
pp. 242–247, 1989.

[11] O. Goldreich. Candidate one-way functions based on ex-
pander graphs.Electronic Colloquium on Computational
Complexity (ECCC), 7(090), 2000.

[12] O. Goldreich. Foundations of Cryptography: Basic Tools.
Cambridge University Press, 2001.

[13] O. Goldreich and L.A. Levin. Hard-core predicate for any
one-way function. InProc. 21st STOC, pp. 25–32, 1989.

[14] S. Goldwasser and S. Micali. Probabilistic encryption.JCSS,
28(2):270–299, 1984. Preliminary version in STOC ’82.

[15] J. Håstad. One-way permutations inNC0. Information Pro-
cessing Letters, 26:153–155, 1987.

[16] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A
pseudorandom generator from any one-way function.SIAM
J. Comput., 28(4):1364–1396, 1999.

[17] R. Impagliazzo and M. Luby. One-way functions are essen-
tial for complexity based cryptography. InProc. of the 30th
FOCSpp. 230–235, 1989.

[18] R. Impagliazzo and M. Naor. Efficient cryptographic
schemes provably as secure as subset sum.Journal of Cryp-
tology, 9:199–216, 1996. Preliminary version in FOCS ’89.

[19] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A
new representation with applications to round-efficient se-
cure computation. InProc. 41st FOCS, pp. 294–304, 2000.

[20] Y. Ishai and E. Kushilevitz. Perfect constant-round secure
computation via perfect randomizing polynomials. InProc.
29th ICALP, pp. 244–256, 2002.

[21] M. Kharitonov. Cryptographic hardness of distribution-
specific learning. InProc. 25th STOC, pp. 372–381, 1993.

[22] J. Kilian. Founding cryptography on oblivious transfer. In
Proc. of 20th STOC, pp. 20–31, 1988.

[23] M. Krause and S. Lucks. On the minimal hardware complex-
ity of pseudorandom function generators (extended abstract).
In Proc. 18th STACS, LNCS2010, pp. 419–430, 2001.

[24] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
Fourier transform, and learnability.J. ACM, 40(3):607–620,
1993. Preliminary version in FOCS ’89.

[25] E. Mossel, A. Shpilka, and L. Trevisan. Onε-biased genera-
tors inNC0. In Proc. 44th FOCS, pp. 136–145, 2003.

[26] J. Naor and M. Naor. Small-bias probability spaces: Efficient
constructions and applications.SIAM J. Comput., 22(4):838–
856, 1993. Preliminary version in Proc. STOC ’90.

[27] M. Naor and O. Reingold. Number-theoretic constructions
of efficient pseudo-random functions.J. ACM, 51(2):231–
262, 2004. Preliminary version in Proc. FOCS ’97.

[28] N. Nisan. Pseudorandom generators for space-bounded com-
putation.Combinatorica, 12(4):449–461, 1992.

[29] M.O. Rabin. Digitalized signatures and public key functions
as intractable as factoring. TR-212, LCS, MIT, 1979.

[30] P. Savicky. On the bent functions that are symmetric.Euro-
pean J. of Combinatorics, 15:407–410, 1994.

[31] E. Viola. On parallel pseudorandom generators. Manuscript,
2004. To be posted on ECCC.

[32] A. Wigderson. NL/poly ⊆ ⊕L/poly. In Proc. 9th Com-
plexity Theory Conference, pp. 59–62, 1994.

[33] A. C. Yao. Theory and application of trapdoor functions. In
Proc. 23rd FOCS, pp. 80–91, 1982.

[34] A. C. Yao. How to generate and exchange secrets. InProc.
27th FOCS, pp. 162–167, 1986.

[35] X. Yu and M. Yung. Space lower-bounds for pseudorandom-
generators. InProc. 9th Complexity Theory Conference, pp.
186–197, 1994.

