
Randomly Encoding Functions:

a New Cryptographic Paradigm∗

Benny Applebaum†

March 25, 2011

Abstract

The notion of randomized encoding allows to represent a “complex” function f(x) by a

“simpler” randomized mapping f̂(x; r) whose output distribution on an input x encodes the
value of f(x). We survey several cryptographic applications of this paradigm.

1 Introduction

To what extent can one simplify the task of computing a function f by settling for computing some
(possibly randomized) encoding of its output? This question can be formalized as follows: We say
that a function f̂(x; r) is a randomized encoding (RE) of a function f(x), if its output distribution
depends only on the output of f . More precisely, we require the existence of an efficient recovery
algorithm Rec and an efficient randomized simulator Sim that satisfy the following conditions:

• (Correctness) For every (x, r), given f̂(x; r) the algorithm Rec recovers f(x);

• (Privacy) For every x, given f(x) the simulator Sim samples from the distribution of f̂(x; r)
induced by a uniform choice of r.

This notion of randomized encoding was introduced by Ishai and Kushilevitz [21] (under the al-
gebraic framework of randomizing polynomials) and was implicitly used, in weaker forms, in the
context of secure multiparty computation (e.g., [23, 19]). Observe that each of the above require-
ments alone can be satisfied by a trivial function f̂ (e.g., f̂(x; r) = x and f̂(x; r) = 0, respectively).
However, the combination of the two requirements can be viewed as a non-trivial natural relax-
ation of the usual notion of computing. This gives rise to the following question: Can we encode
“complex” functions f by “simple” functions f̂?

It is not hard to show that if one is restricted to deterministic encoding the answer is in general
negative. For example, let us call a function “simple” if each of its output bits depends on a small
constant number of input bits, e.g., 4. In this case, if a boolean function f : {0, 1}n → {0, 1} can
be deterministically encoded by some (possibly non-boolean) simple function f̂ , then f itself is
simple. Indeed if the encoding is deterministic then, by privacy, there is a pair of strings z0 and z1

∗Invited Survey to International Conference on Information Theoretic Security, 2011.
†School of Electrical Engineering, Tel-Aviv University, benny.applebaum@gmail.com. Supported by Alon and

Koshland Fellowships.

1



such that for every x we have f̂(x) = zf(x). By correctness, z0 and z1 should differ in at least a
single location i (assuming that f is non-degenerate). Hence, f(x) can be computed by the 4-local
function which projects the i-th bit of f̂(x) and, possibly, flips the result. A similar argument holds
for any notion of simplicity that is closed under bit-projection and negation.

On the other hand, the use of randomness allows us to encode non-simple functions by simple
ones. For example, the sum-function

f(x) = x1 + . . .+ xn,

where xi is the i-th bit of x and addition is over F2, can be encoded by the 3-local function

f̂(x; (r1, . . . , rn−1)) = (x1 − r1, r1 + x2 − r2, . . . , rn−1 + xn),

which uses n− 1 random inputs r = (r1, . . . , rn−1) and outputs n bits. To prove correctness, note
that the sum of the output bits of f̂(x; r) equals to

∑
xi as the ri’s cancel out. On the other

hand, when r is random, the vector f̂(x; r) is uniformly distributed over all n-bit vectors whose
components add to f(x), and so privacy follows.

Perhaps surprisingly, it turns out that REs are powerful enough to encode rich classes of func-
tions. In [21, 22, 4, 3] it is shown that 4-local functions can encode log-space computations, and
even poly-time computations if one settles for computational privacy, i.e., the simulator’s output is
only required to be computationally indistinguishable from f̂(x; r).1 Similar results hold for other
notions of simplicity that will be mentioned later.

The ability to encode complex functions by simple ones is extremely useful. In this short
survey we will focus on the applications of REs (and ignore the way REs are constructed). In
the next sections we will demonstrate several interesting ways in which this tool can be employed.
We consider the archetypal cryptographic setting where Alice and Bob wish to accomplish some
computational goal (e.g., a functionality f) at the presence of an adversary. We will see that REs
can be beneficial when they are applied to each component of this system: to the functionality, to
the honest parties, and even to the adversary.

2 Encoding the Functionality

Delegating computations. Suppose that Bob is a computationally weak device (client) who
wishes to compute a complex function f on an input x. Bob is too weak to compute f on his
own and so he delegates the computation to a computationally strong server Alice. Since Bob
does not trust Alice, he wishes to guarantee the following: (1) Secrecy: Alice should learn nothing
on the input x; and (2) Verifiability: Bob should be able to verify the correctness of the output
(i.e., a cheating Alice should be caught whp). Similar problems were extensively studied in various
settings, originating from the early works on interactive proofs, program checking and instance-
hiding schemes (see references in [6]).

Let us start with secrecy and consider a variant where both parties should learn the output f(x)
but x should remain private. In this case, a randomized encoding f̂ immediately solves the problem
via the following single-round protocol: Bob selects private randomness r, computes f̂(x; r) and

1The latter requires to assume the existence of log-space computable one-way function, an assumption which is
implied by most standard intractability assumptions used in cryptography.

2



sends the result to Alice who applies the recovery algorithm and outputs the result. The privacy of
the RE guarantees that Alice learns nothing beyond f(x). We refer to this protocol as the basic RE
protocol. Jumping ahead, we note that the protocol has a non-trivial correctness guarantee: even if
the server Alice deviates from the protocol and violates correctness she cannot force an erroneous
output which violates privacy; that is, it is possible to simulate erroneous outputs solely based on
the correct outputs.

It is not hard to modify the basic protocol and obtain full secrecy: instead of encoding f , encode
an encrypted version of f . Namely, define a function g(x, s) = f(x) ⊕ s, where s plays the role of
a one-time pad (OTP), and apply the previous protocol as follows: Bob uniformly chooses the pad
s and the randomness r, and sends the encoding ĝ(x, s; r) of g to Alice, who recovers the result
y = g(x, s) = f(x) ⊕ s, and sends it back to Bob. Finally, Bob removes the pad s and terminates
with f(x). (See [3] for more details.)

Achieving verifiability is slightly more tricky. The idea, due to [6], is to combine an RE with
a private-key signature scheme (also known as message authentication code or MAC) and ask the
server to sign the output of the computation under the client’s private key. Here the privacy
property of the RE will be used to hide the secret key. Specifically, given an input x, Bob asks
Alice to compute y = f(x) (via the previous protocol) and, in addition, to generate a signature on
f(x) under a private key k which is chosen randomly by the client. The latter request is computed
via the basic RE protocol that hides the private key from Alice. More precisely, Bob, who holds
both x and k, invokes an RE protocol in which both parties learn the function g(x, k) = MACk(f(x)).
Bob then accepts the answer y if and only if the result of the protocol is a valid signature on y
under the key k. (The latter computation is typically cheap). The soundness of the protocol follows
by showing that a cheating Alice, which fools Bob to accept an erroneous y∗ ̸= f(x), can be used
to either break the privacy of the RE or to forge a valid signature on a new message. For this
argument to hold, we crucially relies on the ability to simulate erroneous outputs based on the
correct outputs.

The main advantage of this approach over alternative solutions is the ability to achieve good
soundness with low computational overhead. For example, 2−τ soundness error introduce an ad-
ditive overhead of τ in the communication whereas the overhead in competing approaches is mul-
tiplicative in τ . (See [6] a more detailed comparison.) Instantiating these approaches with known
constructions of REs lead to protocols with an NC0 client2 for either log-space functions or poly-
time functions depending on the level of security needed (information-theoretic or computational).
In fact, in the computational setting we can even reduce the sequential -complexity of the client
Bob, assuming that he is allowed to invest a lot of computational resources in a preprocessing phase
before seeing the actual input x. We also mention that REs can achieve other related properties
such as correctability [6]: i.e., Bob is able to correct Alice’s errors as long as Alice is somewhat
correct with respect to a predefined distribution over the inputs. In the latter case REs yield NC0

correctors for log-space computations strengthening the results of [20].

Secure computation [21]. Let us move to a more general setting where the roles of Alice and
Bob are symmetric and none of them is computationally weak. The main observation is that
instead of securely computing f it suffices to securely compute the randomized encoding f̂(x; r).
Indeed, if Alice and Bob learn a sample from f̂(x; r) then they can locally recover the value of f(x)

2Functions in NC0 are computable by constant-depth circuits of bounded fan-in, and so they capture a strong
notion of constant parallel-time computation.

3



and nothing else. In other words, the task of securely computing f reduces to the task of securely
computing a simpler randomized functionality f̂(x; r). As protocol designers, we get a powerful tool
which allows us to construct a complex interactive object (protocol) by arguing about a simpler
non-interactive object (RE).

This paradigm, which was introduced in [21] (and motivated the original definition of REs),
yields several new results in the domain of secure computation. As an example, if the algebraic
degree of f̂ is constant then it can be computed in constant number of rounds [9, 15]. By instan-
tiating this approach with known RE constructions [22, 16], we derive constant-round protocols
for boolean or arithmetic log-space functions with information-theoretic security. In the computa-
tional setting, this yields a new constant round protocol for poly-time functions [3] providing an
alternative construction to the classical protocol of [8].3 The RE based approach also simplifies
the proofs of classical results such as Yao’s garbled-circuit protocol [24] and Kilian’s completeness
theorem [23].

3 Encoding the Primitive: Parallel Cryptography

Suppose now that we already have an implementation of some cryptographic protocol. A key
observation made in [4] is that we can “simplify” some of the computations in the protocol by
replacing them with their encodings. Consider, for example, the case of public-key encryption:
Alice publishes a public/private key pair (pk, sk); Bob uses the public-key pk and a sequence of
random coins s to “garble” a message m into a ciphertext c = E(pk,m, s); Finally, Alice recovers
m by applying the decryption algorithm to the ciphertext D(sk, c). Suppose that Bob sends an
encoding of his ciphertext Ê(pk,m, s; r) instead of sending c. This does not violate semantic-
security as all the information available to an adversary in the modified protocol can be emulated
by an adversary who attacks the original protocol (thanks to the simulator of the RE). On the other
hand, Alice can still decrypt the message: first she recovers the original ciphertext (via the recovery
algorithm) and then she applies the original decryption algorithm. As a result, we “pushed” the
complexity of the sender (encryption algorithm) to the receiver (decryption algorithm).

By employing REs with some additional properties, it is possible to prove similar results for
many other cryptographic protocols (e.g., one-way functions, pseudorandom generators, collision-
resistance hash functions, signatures, commitments, zero-knowledge proofs) and even information-
theoretic primitives (e.g., ε-biased generators and randomness extractors). In the case of stand-
alone primitives (e.g., one-way functions and pseudorandom generators) there is no receiver and so
the gain in efficiency comes for “free”.

Being security preserving, REs give rise to the following paradigm. In order to construct some
cryptographic primitive P in some low complexity classWEAK, first encode functions from a higher
complexity class ST RONG by functions from WEAK; then, show that P has an implementation
f in ST RONG, and finally replace f by its encoding f̂ ∈ WEAK and obtain a low-complexity
implementation of P. This approach was used in [4, 3, 5] to obtain cryptographic primitives in NC0

and even in weaker complexity classes. The fact that REs preserve cryptographic hardness was
also used to reduce the complexity of cryptographic reductions [4, 3] and to reduce the complexity
of complete problems for sub-classes of statistical zero-knowledge [18].

3The RE based solution requires slightly stronger assumption – one-way function computable in log-space rather
in poly-time – but can also lead to efficiency improvements as shown in [17].

4



4 Encoding the Adversary: Key-Dependent Security

Key-dependent message (KDM) secure encryption schemes [14, 10] provide secrecy even when
the attacker sees encryptions of messages related to the secret-key sk. Namely, we say that an
encryption is KDM secure with respect to a function class F if semantic security holds even when
the adversary can ask for an encryption of the message f(sk) where f is an arbitrary function in F .
Until recently, it was only known how to achieve KDM security for simple linear (or affine) function
families [11, 2, 12]. To improve this situation, we would like to have an amplification procedure
which starts with F̂-KDM secure encryption scheme and boost it into an F-KDM secure scheme,
where the function class F should be richer than F̂ . It was recently shown [13, 7] that a strong
form of amplification is possible, provided that the underlying encryption scheme satisfies some
special additional properties. We show [1] how to use REs in order to achieve a generic KDM
amplification theorem.

Let f(x) be a function and let us view the encoding f̂(x; r) as a collection of functions F̂ ={
f̂r(x)

}
r
, where each member of the collection corresponds to some possible fixing of the random-

ness r, i.e., f̂r(x) = f̂(x; r). Now suppose that our scheme is KDM secure with respect to the family
F̂ , and we would like to immunize it against the (more complicated) function f . This can be easily
achieved by modifying the encryption scheme as follows: to encrypt a message m we first translate
it into the f̂ -encoding by applying the RE simulator Sim(m), and then encrypt the result under the
original encryption scheme. Decryption is done by applying the original decryption algorithm, and
then applying the recovery algorithm Rec to translate the result back to its original form. Observe
that an encryption of f(sk) in the new scheme is the same as an encryption of S(f(sk)) = f̂(sk; r)
under the original scheme. Hence, a KDM query for f in the new scheme is emulated by an old
KDM query for a randomly chosen function f̂r. It follows that the KDM security of the new scheme
with respect to f reduces to the KDM security of the original scheme with respect to F̂ .

This idea easily generalizes to the case where instead of a single function f we have a class
of functions F which are all encoded by functions in F̂ . Moreover, the simple structure of the
reduction (i.e., a single KDM query of the new scheme translates to a single KDM query of the
original scheme) allows to obtain a strong amplification theorem which is insensitive to the exact
setting of KDM security, including the symmetric-key/public-key setting, the CPA/CCA cases
and the case of multiple-keys. Using known constructions of REs, we can amplify KDM security
with respect to linear functions (or even bit-projections) into functions computable by circuits of
arbitrary fixed polynomial-size (e.g., n2).

Acknowledgement. I thank to the conference organizers for inviting this survey, and to Yuval
Ishai and Eyal Kushilevitz for introducing me to the notion of randomized encoding and for fruitful
and enjoyable collaborations.

References

[1] Applebaum, B.: Key-dependent message security: Generic amplification and completeness
theorems. In: EUROCRYPT 2011.

[2] Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-
secure encryption based on hard learning problems. In: CRYPTO 2009.

5



[3] Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials
and their applications. Journal of Computional Complexity 15(2), 115–162 (2006)

[4] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography in NC0. SIAM Journal on Computing
36(4), 845–888 (2006)

[5] Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography by cellular automata or how fast can
complexity emerge in nature? In: ICS 2010.

[6] Applebaum, B., Ishai, Y., Kushilevitz, E.: From secrecy to soundness: Efficient verification
via secure computation. In: ICALP (1) (2010), draft of full version available at the authors
home page.

[7] Barak, B., Haitner, I., Hofheinz, D., Ishai, Y.: Bounded key-dependent message security. In:
EUROCRYPT 2010.

[8] Beaver, D., Micali, S., Rogaway, P.: The round complexity of secure protocols (extended
abstract). In: STOC 1990.

[9] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In: STOC 1988.

[10] Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-
dependent messages. In: SAC 2002.

[11] Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision
Diffie-Hellman. In: CRYPTO 2008.

[12] Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under sub-
group indistinguishability (or: Quadratic residuosity strikes back). In: CRYPTO 2010.

[13] Brakerski, Z., Goldwasser, S., Kalai, Y.: Circular-secure encryption beyond affine functions.
In: TCC 2011.

[14] Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous creden-
tials with optional anonymity revocation. In: EUROCRYPT 2001.

[15] Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols (extended
abstract). In: STOC 1988.

[16] Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings.
In: EUROCRYPT 2003.

[17] Damg̊ard, I. and Ishai, Y.: Scalable Secure Multiparty Computation. In: CRYPTO 2006.

[18] Dvir, Z., Gutfreund, D., Rothblum, G., Vadhan, S.: On Approximating the Entropy of Poly-
nomial Mappings. In: ICS 2011.

[19] Feige, U., Killian, J., Naor, M.: A minimal model for secure computation (extended abstract).
In: STOC 1994 .

6



[20] Goldwasser, S., Gutfreund, D., Healy, A., Kaufman, T., Rothblum, G.N.: A (de)constructive
approach to program checking. In: STOC 2008.

[21] Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A new representation with applications
to round-efficient secure computation. In: FOCS 2000.

[22] Ishai, Y., Kushilevitz, E.: Perfect constant-round secure computation via perfect randomizing
polynomials. In: ICALP 2002.

[23] Kilian, J.: Founding cryptography on oblivious transfer. In: STOC 1988.

[24] Yao, A.C.C.: Theory and application of trapdoor functions. In: FOCS 1982.

7


