
Computationally Private Randomizing Polynomials
and Their Applications

(EXTENDED ABSTRACT)∗

Benny Applebaum Yuval Ishai Eyal Kushilevitz

Computer Science Department, Technion
{abenny,yuvali,eyalk}@cs.technion.ac.il

Abstract

Randomizing polynomials allow to represent a function
f(x) by a low-degree randomized mapping f̂(x, r) whose
output distribution on an input x is a randomized encoding
of f(x). It is known that any function f in ⊕L/poly (and in
particular in NC1) can be efficiently represented by degree-
3 randomizing polynomials. Such a degree-3 representation
gives rise to an NC0

4 representation, in which every bit of
the output depends on only 4 bits of the input.

In this paper, we study the relaxed notion of computa-
tionally private randomizing polynomials, where the output
distribution of f̂(x, r) should only be computationally in-
distinguishable from a randomized encoding of f(x). We
construct degree-3 randomizing polynomials of this type
for every polynomial-time computable function, assuming
the existence of a cryptographic pseudorandom generator
(PRG) in ⊕L/poly. (The latter assumption is implied by
most standard intractability assumptions used in cryptog-
raphy.) This result is obtained by combining a variant of
Yao’s garbled circuit technique with previous “information-
theoretic” constructions of randomizing polynomials.

We then present the following applications:

• Relaxed assumptions for cryptography in NC0. As-
suming a PRG in ⊕L/poly, the existence of an arbi-
trary public-key encryption, commitment, or signature
scheme implies the existence of such a scheme in NC0

4.
Previously, one needed to assume the existence of such
schemes in ⊕L/poly or similar classes.

• New parallel reductions between cryptographic
primitives. We show that even some relatively com-
plex cryptographic primitives, including (state-
less) symmetric encryption and digital signatures,
are NC0-reducible to a PRG. No parallel reduc-
tions of this type were previously known, even in NC.

∗ Supported by grant no. 36/03 from the Israel Science Foundation.

Our reductions make a non-black-box use of the un-
derlying PRG.

• Application to secure multi-party computation. As-
suming a PRG in ⊕L/poly, the task of computing an
arbitrary (polynomial-time computable) function with
computational security efficiently reduces to that of
securely computing degree-3 polynomials. This gives
rise to new, conceptually simpler, constant-round pro-
tocols for general functions.

1. Introduction

To what extent can one simplify the task of computing
a function f by settling for computing some (possibly ran-
domized) encoding of its output? The study of this question
was initiated in the context of secure multi-party computa-
tion [17, 18], and has recently found applications to parallel
constructions of cryptographic primitives [1]. In this paper
we consider a relaxed variant of this question and present
some new constructions and cryptographic applications.

The above question can be formally captured by the fol-
lowing notion. We say that a function f̂(x, r) is a random-
ized encoding of a function f(x), if its output distribution
depends only on the output of f . More precisely, we require
that: (1) given f̂(x, r) one can efficiently recover f(x), and
(2) given f(x) one can efficiently sample from the distribu-
tion of f̂(x, r) induced by a uniform choice of r.

This notion of randomized encoding defines a nontrivial
relaxation of the usual notion of computing, and thus gives
rise to the following question: Can we encode “complex”
functions f by “simple” functions f̂? This question is mo-
tivated by the fact that in many cryptographic applications,
f̂ can be securely used as a substitute for f [17, 1]. For in-
stance, if f is a one-way function then so is f̂ . It should be
noted that different applications motivate different interpre-
tations of the term “simple” above. In the context of multi-

party computation, one is typically interested in minimizing
the algebraic degree of f̂ , viewing it as a vector of multivari-
ate polynomials over a finite field. In this context, f̂ was re-
ferred to as a representation of f by randomizing polynomi-
als [17]. In other contexts it is natural to view f̂ as a function
over binary strings and attempt to minimize its parallel time
complexity [1]. From here on, we will refer to f̂ as a “ran-
domized encoding” of f (or simply “encoding” for short)
except when we wish to stress that we are interested in min-
imizing the degree.

It was shown in [17, 18] that every function f in
⊕L/poly can be efficiently represented by degree-3 ran-
domizing polynomials over GF(2).1 (The class ⊕L/poly
contains L/poly and NC1 and is contained in NC2. In a
non-uniform setting it also contains NL/poly [30].) More-
over, every degree-3 encoding can in turn be converted into
an NC0 encoding with locality 4, namely one in which
every bit of the output depends on only 4 bits of the in-
put [1]. A major question left open by the above results is
whether every polynomial-time computable function ad-
mits an encoding in NC0.

In this work we consider a relaxed notion of computa-
tionally private randomized encodings, where requirement
(2) above is relaxed to allow sampling from a distribution
which is computationally indistinguishable from f̂(x, r).
As it turns out, computationally private encodings are suffi-
cient for most applications. Thus, settling the latter question
for the relaxed notion may be viewed as a second-best alter-
native.

1.1. Overview of Results and Techniques

We construct a computationally private encoding in NC0

for every polynomial-time computable function, assuming
the existence of a “minimal” cryptographic pseudorandom
generator (PRG) [5, 31], namely one that stretches its seed
by just one bit, in ⊕L/poly.2 We refer to the latter assump-
tion as the “Easy PRG” (EPRG) assumption. (This assump-
tion can be slightly relaxed, e.g., to also be implied by the
existence of a PRG in NL/poly; see Remark 4.13.) We note
that EPRG is a very mild assumption. In particular, it is
implied by most concrete intractability assumptions com-
monly used in cryptography, such as ones related to factor-
ing, discrete logarithm, or lattice problems. It is also implied
by the existence in ⊕L/poly of a one-way permutation or,
using [16], of any one-way function whose “entropy” can
be efficiently computed. The NC0 encoding we obtain un-
der the EPRG assumption has degree 3 and locality 4. Its

1 This result generalizes to arbitrary finite fields [18] or even rings [9],
allowing efficient degree-3 representations of various counting
logspace classes.

2 It is not known whether such a minimal PRG implies a PRG in the
same class that stretches its seed by a linear or superlinear amount.

size is nearly linear in the circuit size of the encoded func-
tion.

The construction consists of three steps. The first step is
an NC0 implementation of one-time symmetric encryption
using a minimal PRG as an oracle. (Such an encryption al-
lows to encrypt a single message whose length may be poly-
nomially larger than the key. Since our PRG extends its seed
by just one bit, it cannot be directly used to encrypt long
messages.) The second and main step of the construction re-
lies on a variant of Yao’s garbled circuit technique [32] to
obtain an encoding in NC0 which uses one-time symmetric
encryption as an oracle. Finally, using the EPRG assump-
tion and [1], we apply a final step of “information-theoretic”
encoding to obtain an encoding in NC0 with degree 3 and
locality 4.

The above result gives rise to several types of crypto-
graphic applications, discussed below.

1.1.1. Relaxed assumptions for cryptography in NC0.
The question of minimizing the parallel time complexity of
cryptographic primitives has been the subject of an exten-
sive body of research (see [23, 1] and references therein).
Pushing parallelism to the extreme, it is natural to ask
whether one can implement cryptographic primitives in
NC0. While it was known that few primitives, including
pseudorandom functions [12], cannot even be implemented
in AC0 [20], no similar negative results were known for
other primitives.

Very recently, it was shown in [1] that the exis-
tence of most cryptographic primitives in NC0 fol-
lows from their existence in higher complexity classes
such as ⊕L/poly, which is typically a very mild as-
sumption. This result was obtained by combining the
results on (information-theoretic) randomized encod-
ings mentioned above with the fact that the security of
most cryptographic primitives is inherited by their random-
ized encoding.

Using our construction of computationally private en-
codings, we can further relax the sufficient assumptions
for cryptographic primitives in NC0. The main observa-
tion is that the security of most primitives is also inherited
by their computationally private encoding. This is the case
even for relatively “sophisticated” primitives such as public-
key encryption, digital signatures, commitments, and non-
interactive zero-knowledge proofs. Thus, given that these
primitives at all exist,3 their existence in NC0 follows from
the EPRG assumption, namely from the existence of a PRG
in complexity classes such as ⊕L/poly or NL/poly. Previ-
ously (using [1]), the existence of each of these primitives in
NC0 would only follow from the assumption that this par-

3 This condition is redundant in the case of signatures and commit-
ments, whose existence follows from the existence of a PRG. In Sec-
tion 1.1.2 we will describe a stronger result for such primitives.

ticular primitive can be implemented in the above classes, a
seemingly stronger assumption than EPRG.

It should be noted that we cannot obtain a similar result
for some other primitives, such as one-way permutations
and collision-resistant hash functions. The results for these
primitives obtained in [1] rely on certain regularity proper-
ties of the encoding that are lost in the transition to compu-
tational privacy.

1.1.2. Parallel reductions between cryptographic prim-
itives. The results of [1] also give rise to new NC0 reduc-
tions between cryptographic primitives. (Unlike the results
discussed in Section 1.1.1 above, here we consider uncon-
ditional reductions that do not rely on unproven assump-
tions.) In particular, known NC1-reductions from PRG to
one-way permutations [13] or even to more general types
of one-way functions [16, 29] can be encoded into NC0-
reductions. However, these NC0-reductions crucially rely
on the very simple structure of the NC1-reductions from
which they are derived. In particular, it is not possible to use
the results of [1] for encoding general NC1-reductions (let
alone polynomial-time reductions) into NC0-reductions.

As a surprising application of our technique, we get a
general “compiler” that converts an arbitrary (polynomial-
time) reduction from a primitive P to a PRG into an NC0-
reduction from P to a PRG. This applies to all primitives
P that are known to be equivalent to a one-way function,
and whose security is inherited by their computationally-
private encoding. In particular, we conclude that symmet-
ric encryption,4 commitment, and digital signatures are all
NC0-reducible to a minimal PRG (hence also to a one-way
permutation or more general types of one-way functions).

No parallel reductions of this type were previously
known, even in NC. The known construction of commit-
ment from a PRG [21] requires a linear-stretch PRG (ex-
panding an n bits n + Ω(n) bits), which is not known
to be reducible in parallel to a minimal PRG. Other
primitives, such as symmetric encryption and signa-
tures, were not even known to be reducible in parallel to
a polynomial-stretch PRG. For instance, the only previ-
ous parallel construction of symmetric encryption from a
“low-level” primitive is based on the parallel PRF con-
struction of [23]. This yields an NC1-reduction from
symmetric encryption to synthesizers, a stronger primi-
tive than a PRG. Thus, we obtain better parallelism and at
the same time rely on a weaker primitive. The price we
pay is that we cannot generally guarantee parallel decryp-
tion. (See Section 5.2 for further discussion.)

4 By symmetric encryption we refer to (probabilistic) stateless encryp-
tion for multiple messages, where the parties do not maintain any state
information other than the key. If parties are allowed to maintain syn-
chronized states, symmetric encryption can be easily reduced in NC0

to a PRG.

An interesting feature of the new reductions is their non-
black-box use of the underlying PRG. That is, the “code” of
the NC0-reduction we get (implementing P using an ora-
cle to a PRG) depends on the code of the PRG. This should
be contrasted with most known reductions in cryptography,
which make a black-box use of the underlying primitive.
In particular, this is the case for the abovementioned NC0-
reductions based on [1]. (See [25] for a thorough taxonomy
of reductions in cryptography.)

1.1.3. Application to secure computation. The notion of
randomizing polynomials was originally motivated by the
goal of minimizing the round complexity of secure multi-
party computation [32, 14, 3, 8]. The main relevant obser-
vations made in [17] were that: (1) the round complexity of
most general protocols from the literature is related to the
degree of the function being computed; and (2) if f is rep-
resented by a vector f̂ of degree-d randomizing polynomi-
als, then the secure computation of f can be reduced to that
of securely computing some deterministic degree-d func-
tion f̂ ′ which is closely related to f̂ . This reduction from
f to f̂ ′ is fully non-interactive, in the sense that it involves
only local computation on the outputs received from f̂ ′ and
does not require additional rounds of interaction.

A useful corollary of our results is that under the
EPRG assumption, the task of securely computing an ar-
bitrary polynomial-time computable function f reduces
(non-interactively) to that of securely computing a re-
lated degree-3 function f̂ ′. This reduction is only compu-
tationally secure. Thus, even if the underlying protocol for
f̂ ′ is secure in an information-theoretic sense, the result-
ing protocol for f will only be computationally secure. (In
contrast, previous constructions of randomizing polynomi-
als maintained information-theoretic security, but only ef-
ficiently applied to restricted function classes such as
⊕L/poly.) This reduction gives rise to new, conceptu-
ally simpler, constant-round protocols for general functions.
For instance, a combination of our result with the clas-
sical “BGW protocol” [3] gives a simpler, and in some
cases more efficient, alternative to the constant-round pro-
tocol of [2] (though relies on a stronger assumption).

Organization. Following some preliminaries (Section 2), in
Section 3 we review previous notions of randomized en-
coding and define our new notion of computationally pri-
vate encoding. In Section 4 we construct a computationally
private encoding in NC0 for every polynomial-time com-
putable function. Finally, applications of this construction
are discussed in Section 5.

2. Preliminaries

Probability notation. We let Un denote a random variable
uniformly distributed over {0, 1}n. If X is a probability dis-

tribution, or a random variable, we write x ← X to indi-
cate that x is a sample taken from X . The statistical dis-
tance between discrete probability distributions Y and Y ′,
denoted SD(Y, Y ′), is defined as the maximum, over all
functions A, of the distinguishing advantage |Pr[A(Y) =
1] − Pr[A(Y ′) = 1]|. A function ε(·) is said to be negligi-
ble if ε(n) < n−c for any c > 0 and sufficiently large n.
For two distribution ensembles Y = {Yn} and Y ′ = {Y ′

n},
we write Y ≡ Y ′ if Yn and Y ′

n are identically distributed,
and say that the two ensembles are statistically indistin-
guishable if SD(Yn, Y ′

n) is negligible in n. A weaker no-
tion of closeness between distributions is that of computa-
tional indistinguishability: We write Y

c≡ Y ′ if for every
polynomial-size circuit family {An}, the distinguishing ad-
vantage |Pr[An(Yn) = 1] − Pr[An(Y ′

n) = 1]| is negligi-
ble.

Circuits. We define a boolean circuit C as a directed acyclic
graph with labeled, ordered vertices of the following types:
(1) input vertices, each labeled with a literal xi or x̄i and
having fan-in 0; (2) gate vertices, labeled with one of the
boolean functions AND,OR and having fan-in 2; (3) out-
put vertices, labeled “output” and having fan-in 1 and fan-
out 0. The edges of the circuit are referred to as wires. A
wire that outgoes from an input vertex is called an input
wire, and a wire that enters an output vertex is called an out-
put wire. Any input x ∈ {0, 1}n assigns a unique value to
each wire in the natural way. The output value of C, denoted
C(x), contains the values of the output wires according to
the given predefined order. The size of a circuit, denoted
|C|, is the number of wires in C, and its depth is the maxi-
mum distance from an input to an output (i.e. the length of
the longest directed path in the graph).

NCi-reductions. A circuit with an oracle access to a func-
tion g : {0, 1}∗ → {0, 1}∗ is a circuit that contains, in ad-
dition to the bounded fan-in OR, AND gates, special or-
acle gates with unbounded fan-in that compute the func-
tion g. We say that f : {0, 1}∗ → {0, 1}∗ is NCi re-
ducible to g, and write f ∈ NCi[g], if f can be computed
by a uniform family of polynomial size, O(logi n) depth
circuits with oracle gates to g. (Oracle gates are treated the
same as AND/OR gates when defining depth.) Note that if
f ∈ NCi[g] and g ∈ NCj then f ∈ NCi+j .

Locality and degree. We say that f is c-local if each of its
output bits depends on at most c input bits. For a constant
c, the non-uniform class NC0

c includes all c-local functions.
We will sometimes view the binary alphabet as the finite
field F = GF(2), and say that a function f has degree d
if each of its output bits can be expressed as a multivari-
ate polynomial of degree (at most) d in the input bits.

Complexity classes. For brevity, we assume all complex-
ity classes to be polynomial-time uniform by default. For
instance, NC0 refers to the class of functions admitting

uniform NC0 circuits. We let NL/poly (resp., ⊕L/poly)
denote the class of boolean functions computed by NL
(resp., ⊕L) Turing machines taking a uniform advice. We
extend boolean complexity classes, such as NL/poly and
⊕L/poly, to include non-boolean functions by letting the
representation include l(n) log-space Turing machines, one
for each output, taking the same uniform advice. Similarly,
we denote by P the class of functions that can be computed
in polynomial time.

3. Randomized Encodings

We now review the notions of randomized encoding and
randomizing polynomials from [17, 18, 1], and introduce
the new computationally private variant discussed in this pa-
per. The following definition is from [1].

Definition 3.1 (Randomized encoding) Let f : {0, 1}n →
{0, 1}l be a function. We say that a function f̂ : {0, 1}n ×
{0, 1}m → {0, 1}s is a δ-correct, ε-private randomized en-
coding of f , if it satisfies the following:

• δ-correctness. There exists an algorithm B, called
a decoder, such that for any input x ∈ {0, 1}n,
Pr[B(f̂(x,Um)) �= f(x)] ≤ δ.

• ε-privacy. There exists a randomized algorithm S,
called a simulator, such that for any x ∈ {0, 1}n,
SD(S(f(x)), f̂(x,Um)) ≤ ε.

We refer to the second input of f̂ as its random input, and to
m, s as the randomness complexity and the output complex-
ity of f̂ respectively. The overall complexity (or complex-
ity) of f̂ is defined to be m + s.

We say that f̂ is a representation (or encoding) of f by
degree-d randomizing polynomials if each of its output bits
can be computed by a multivariate polynomial over GF(2)
of degree at most d in the inputs.

Definition 3.1 naturally extends to infinite functions f :
{0, 1}∗ → {0, 1}∗. In this case, the parameters l,m, s, δ, ε
are all viewed as functions of the input length n, and the
algorithms B,S receive 1n as an additional input. By de-
fault, we require f̂ to be computable in poly(n) time when-
ever f is. In particular, both m(n) and s(n) are polynomi-
ally bounded. We also require both the decoder and the sim-
ulator algorithms to be efficient.

Several variants of randomized encodings were consid-
ered in [1]. Correctness (resp., privacy) is said to be per-
fect when δ = 0 (resp. ε = 0) or statistical when δ(n)
(resp. ε(n)) is negligible. In order to preserve the secu-
rity of some primitives (such as pseudorandom generators
or one-way permutations) even perfect correctness and pri-
vacy might not suffice and additional requirements should
be introduced. An encoding is said to be balanced if it ad-
mits a perfectly private simulator S such that S(Ul) ≡ Us.

It is said to be stretch preserving if s = l+m. We say that f̂
is a statistical randomized encoding of f if it is both statisti-
cally correct and statistically private, and that it is a perfect
randomized encoding if it is perfectly correct and private,
balanced, and stretch preserving. In this work, we abandon
the information theoretic setting and relax the privacy re-
quirement to be computational. That is, we require the en-
sembles S(1n, fn(x)) and f̂n(x,Um(n)) to be computation-
ally indistinguishable.

Definition 3.2 (Computational randomized encod-
ing) Let f = {fn : {0, 1}n → {0, 1}l(n)}n∈N

be a function family. We say that the function fam-
ily f̂ = {f̂n : {0, 1}n × {0, 1}m(n) → {0, 1}s(n)}n∈N

is a computational randomized encoding of f (or compu-
tational encoding for short), if it satisfies the following
requirements:

• Statistical correctness. There exists a polynomial-
time decoder B, such that for any n and any input x ∈
{0, 1}n, Pr[B(1n, f̂n(x,Um(n))) �= fn(x)] ≤ δ(n),
for some negligible function δ(n).

• Computational privacy. There exists a probabilistic
polynomial-time simulator S, such that for any fam-
ily of strings {xn}n∈N where |xn| = n, we have
S(1n, fn(xn))

c≡ f̂n(xn, Um(n)).

We will also refer to perfectly correct computational en-
codings, where the statistical correctness requirement is
strengthened to perfect correctness. In fact, our main con-
struction yields a perfectly correct encoding.

Remark 3.3 The above definition uses n both as an in-
put length parameter and as a cryptographic “security pa-
rameter” quantifying computational privacy. When describ-
ing our construction, it will be convenient to use a separate
parameter k for the latter, where computational privacy will
be guaranteed as long as k ≥ nε for some constant ε > 0.

The function classes SREN and PREN were intro-
duced in [1] to capture the power of statistical and perfect
randomized encodings in NC0. We define a similar class
CREN .

Definition 3.4 (The classes CREN, SREN, PREN) The
class CREN (resp., SREN ,PREN) is the class of func-
tions admitting a computational (resp., statistical, perfect)
randomized encoding in NC0.

It follows from the definitions that PREN ⊆ SREN ⊆
CREN . Moreover, it is known that ⊕L/poly ⊆ PREN
and NL/poly ⊆ SREN [1].

We end this section by considering the following intu-
itive composition property: Suppose we encode f by g, and
then view g as a single-argument function and encode it
again. Then, the resulting function (parsed appropriately)
is an encoding of f . The following lemma was stated in [1]

for the statistical and perfect variants of randomized encod-
ings; we extend it here to the computational variant.

Lemma 3.5 (Composition) Let g(x, r) be a computational
encoding of f(x) and h((x, r), r′) a computational encod-
ing of g((x, r)), viewing the latter as a single-argument
function. Then, the function h′(x, (r, r′)) def= h((x, r), r′) is
a computational encoding of f(x) whose random inputs are
(r, r′). Moreover, if g, h are perfectly correct then so is h′.

Proof sketch: A decoder for h′ is obtained by compos-
ing the decoders of h and g. Specifically, given an output
yh′ of h′ (i.e., yh′ = h′(x, (r, r′)) = h((x, r), r′) for some
x, r, r′), it first decodes yg = g(x, r) by invoking the de-
coder of h on yh′ , and then decodes yf = f(x) by invok-
ing the decoder of g on yg . This decoder is perfectly (resp.,
statistically) correct if both the decoders of h and g are per-
fectly (resp., statistically) correct. To prove computational
privacy, we again compose the computationally private sim-
ulators of g and h, this time in an opposite order. Specifi-
cally, on input yf = f(x), the simulator of h′ first invokes
the simulator of g on yf , obtaining a simulated string yg,
and then invokes the simulator of h on yg . The computa-
tional privacy of this simulator follows from that of the sim-
ulators of g, h by a standard hybrid argument.

It follows as a special case that the composition of a com-
putational encoding with a perfect or a statistical encoding
is a computational encoding.

Remark 3.6 It is known that any f ∈ PREN (resp.,
f ∈ SREN) admits a perfect (resp., statistical) encoding
of degree 3 and locality 4 [1]. The same holds for the class
CREN , since we can encode a function f ∈ CREN by a
computational encoding in NC0 and then encode the result-
ing function using a perfect encoding of degree 3 and lo-
cality 4 (promised by the fact that NC0 ⊆ PREN). By
Lemma 3.5, the result is a computational encoding for f of
degree 3 and locality 4.

4. Computational Encoding in NC0 for Every
Efficiently Computable Function

In this section we construct a perfectly correct compu-
tational encoding of degree 3 and locality 4 for every ef-
ficiently computable function. Our construction consists of
three steps. In Section 4.1, we describe an NC0 implemen-
tation of one-time symmetric encryption using a minimal
PRG as an oracle (i.e., a PRG that stretches its seed by just
one bit). In Section 4.2 we describe the main step of the con-
struction, in which we encode an arbitrary circuit using an
NC0 circuit which uses one-time symmetric encryption as
an oracle. This step is based on a variant of Yao’s garbled
circuit technique [32]. Combining the first two steps, we get
a computational encoding in NC0 with an oracle to a mini-

mal PRG. Finally, in Section 4.3, we derive the main result
by relying on the existence of an “easy PRG”.

4.1. From PRG to One-Time Encryption

An important tool in our construction is a one-time sym-
metric encryption; that is, a (probabilistic) private-key en-
cryption that is semantically secure [15] for encrypting a
single message. We describe an NC0-reduction from such
an encryption to a minimal PRG, stretching its seed by a
single bit. We start by defining one-time symmetric encryp-
tion.

Definition 4.1 (One-time symmetric encryption) A one-
time symmetric encryption scheme is a pair (E,D), of
probabilistic polynomial-time algorithms satisfying the fol-
lowing conditions:

• Correctness: For every k-bit key e and for every plain-
text m ∈ {0, 1}∗, the algorithms E,D satisfy
De(Ee(m)) = m.

• Security: For every polynomial-size circuit fam-
ily {Ak}, every polynomials p(·) and �(·), all suffi-
ciently large k’s and every plaintexts x, y ∈ {0, 1}�(k),
it holds that

|Pr[Ak(EUk
(x)) = 1]−Pr[Ak(EUk

(y)) = 1]| < 1
p(k)

where the probabilities are taken over the random
choice of the key and the coin tosses of E.

The integer k serves as the security parameter of the scheme.

The above definition enables to securely encrypt poly-
nomially long messages under short keys. This is an im-
portant feature that will be used in our garbled circuit con-
struction described in Section 4.2. In fact, it would suffice
for our purposes to encrypt messages of some fixed poly-
nomial5 length, say �(k) = k2. This could be easily done
in NC0 if we had oracle access to a PRG with a corre-
sponding stretch. Given such a PRG G, the encryption can
be defined by Ee(m) = G(e) ⊕ m and the decryption by
De(c) = G(e)⊕c. However, we would like to base our con-
struction on a PRG with a minimal stretch.

From the traditional “sequential” point of view, such a
minimal PRG is equivalent to a PRG with an arbitrary poly-
nomial stretch (cf. [10, Thm. 3.3.3]). In contrast, this is not
known to be the case with respect to parallel reductions.
It is not even known whether a linear-stretch PRG is NC-
reducible to a minimal PRG (see [29] for some relevant neg-
ative results). Thus, a minimal PRG is a more conservative
assumption from the point of view of parallel cryptography.

5 Applying the construction to circuits with a bounded fan-out, even lin-
ear length would suffice.

Moreover, unlike a PRG with linear stretch, a minimal PRG
is reducible in parallel to one-way permutations and other
types of one-way functions [16, 29, 1].

The above discussion motivates a direct parallel con-
struction of one-time symmetric encryption using a mini-
mal PRG. We present such an NC0 construction below.

Construction 4.2 (From PRG to one-time symmet-
ric encryption) Let G be a minimal PRG that stretches
its input by a single bit, let e be a k-bit key, and let m
be a (k + l)-bit plaintext. Define the probabilistic en-
cryption algorithm Ee(m, (r1, . . . , rl−1))

def= (G(e) ⊕ r1,
G(r1) ⊕ r2, . . . , G(rl−2) ⊕ rl−1, G(rl−1) ⊕ m), where
ri ← Uk+i serve as the coin tosses of E. The decryption al-
gorithm De(c1, . . . , cl−1) sets r0 = e, ri = ci ⊕ G(ri−1)
for i = 1, . . . , l, and outputs rl.

The security of Construction 4.2 is proved via a standard
hybrid argument.

Lemma 4.3 The scheme (E,D) described in Construc-
tion 4.2 is a one-time symmetric encryption scheme.

Proof: Construction 4.2 can be easily verified to sat-
isfy the correctness requirement. We now sketch the secu-
rity proof. Assume, towards a contradiction, that Construc-
tion 4.2 is not secure. It follows that there is a polynomial
l(·) and two families of strings x = {xk} and y = {yk}
where |xk| = |yk| = k + l(k), such that for infinitely many
k’s, the distribution ensembles Ee(xk) and Ee(yk) where
e ← Uk, can be distinguished by a polynomial size circuit
family {Ak} with non-negligible advantage ε(k).

We use a hybrid argument to derive a contradiction.
Fix some k. For a string m of length k + l(k) we de-
fine for 0 ≤ i ≤ l(k) the distributions Hi(m) in the
following way. The distribution H0(m) is defined to be
Er0(m, (r1, . . . , rl−1)) where ri ← Uk+i. For 1 ≤ i ≤
l(k), the distribution Hi(m) is defined exactly as Hi−1(m)
only that the string G(ri−1) is replaced with a random
string wi−1, which is one bit longer than ri−1 (that is,
wi−1 ← Uk+i). Observe that for every m ∈ {0, 1}k+l(k),
all the l(k) strings of the hybrid Hl(k)(m) are distributed
uniformly and independently (each of them is the result of
XOR with a fresh random string wi). Therefore, in partic-
ular, Hl(k)(xk) ≡ Hl(k)(yk). Since H0(xk) ≡ Ee(xk) as
well as H0(yk) ≡ Ee(yk), it follows that our distinguisher
Ak distinguishes, w.l.o.g., between Hl(k)(xk) and H0(xk)
with at least ε(k)/2 advantage. Then, since there are l(k)
hybrids, there must be 1 ≤ i ≤ l(k) such that the neighbor-
ing hybrids, Hi−1(xk),Hi(xk), can be distinguished by Ak

with ε(k)
2l(k) advantage.

We now show how to use Ak to distinguish a randomly
chosen string from an output of the pseudorandom gener-
ator. Given a string z of length k + i (that is either sam-
pled from G(Uk+i−1) or from Uk+i), we uniformly choose

the strings rj ∈ {0, 1}k+j for j = 1, . . . , l(k) − 1. We
feed Ak with the sample (r1, . . . , ri−1, z ⊕ ri, G(ri) ⊕
ri+1, . . . , G(rl(k)−1)⊕xk). If z is a uniformly chosen string
then the above distribution is equivalent to Hi(xk). On the
other hand, if z is drawn from G(Ui) then the result is dis-
tributed exactly as Hi−1(xk), since each of the first i − 1
entries of Hi−1(xk) is distributed uniformly and indepen-
dently of the remaining entries (each of these entries was
XOR-ed with a fresh and unique random wj). Hence, we
constructed an adversary that breaks the PRG with non-
negligible advantage ε(k)

2l(k) , deriving a contradiction.
Since the encryption algorithm described in Construc-

tion 4.2 is indeed an NC0 circuit with oracle access to a
minimal PRG, we get the following lemma.

Lemma 4.4 Let G be a PRG. Then, there exists one-time
symmetric encryption scheme (E,D) in which the encryp-
tion function E is in NC0[G].

Note that the decryption algorithm of the above construc-
tion is sequential. This issue will be further discussed later.

4.2. From One-Time Encryption to Computa-
tional Encoding

Let f = {fn : {0, 1}n → {0, 1}l(n)}n∈N be a
polynomial-time computable function, computed by the
uniform circuit family {Cn}n∈N. We use a one-time sym-
metric encryption scheme (E,D) as a black box to en-
code f by a perfectly correct computational encoding
f̂ = {f̂n}n∈N. Each f̂n will be an NC0 circuit with an or-
acle access to the encryption algorithm E, where the latter
is viewed as a function of the key, the message, and its ran-
dom coin tosses. This construction uses a variant of Yao’s
garbled circuit technique [32]. Our notation and terminol-
ogy for this section borrow from previous presentations of
Yao’s construction in [26, 22, 19].6

Notation. Denote by x = (x1, . . . , xn) the input for fn. Let
k = k(n) be a security parameter which may be set to nε for
an arbitrary positive constant ε (see Remark 3.3). Let Γ(n)
denote the number of gates in Cn. For every 1 ≤ i ≤ |Cn|,
denote by bi(x) the value of the i-th wire induced by the in-
put x; when x is clear from the context we simply use bi to
denote the wire’s value.

We would like to garble the circuit Cn evaluated on an
input x such that values obtained on all wires other than out-
put wires are never revealed. In order to do this, our encod-
ing f̂n(x, (r,W)) consists of random inputs of two types:

6 Security proofs for variants of this construction were given implicitly
in [26, 28, 19] in the context of secure computation. However, they
cannot be directly used in our context for different reasons. In particu-
lar, the analysis of [19] relies on a special form of symmetric encryp-
tion and does not achieve perfect correctness, while that of [26, 28]
relies on a linear-stretch PRG.

|Cn| bits (referred to as masks) denoted r1, . . . , r|Cn| corre-
sponding to the |Cn| wires of Cn, and |Cn| pairs of strings
(referred to as signals) W 0

i ,W 1
i ∈ {0, 1}2k again in cor-

respondence with the |Cn| wires. We use ci to denote the
value of wire i masked by ri; namely, ci = bi ⊕ ri. The en-
coding f̂n(x, (r,W)) will reveal the masked value, ci, of
every wire but will hide the masks ri’s of all the wires ex-
cept of the output wires. This way, the real values (bi’s) of
non-output wires will remain hidden. The signal W 0

i repre-
sents the value 0 on wire i and the signal W 1

i represents the
value 1 on this wire. We refer to the signal W bi

i , that cor-
responds to the real value of the wire, as an on-path sig-
nal and to the other signal W 1−bi

i as an off-path signal. We
view each string W b

i as if it is broken into two equal-size
parts denoted W b,0

i ,W b,1
i .

The encoding will enable computation of the on-path
signal and masked value of each wire, but will hide the off-
path signals. Since the on-path signals and off-path signals
are distributed identically, the knowledge of an on-path sig-
nal W bi

i does not reveal the value bi. To compute the on-
path signals and masked bits, we add to our encoding a gar-
bled truth table for every gate. The table maps the on-path
labels and masked bits of the input wires of a gate into the
on-path labels and masked bits of the output wires of this
gate, and thus enables a bottom-to-top computation of these
values. Namely, for each of the four possible inputs to a
gate α, β ∈ {0, 1} we encrypt the corresponding signals
and masked bits of the gate’s output wires, where the keys
of the encryption are the corresponding on-path signals of
the input wires.

We view the encoding f̂n as the concatenation of
O(|Cn|) functions. In particular, we specify several en-
tries for each gate and for each input and output wire. In
what follows ⊕ denotes bitwise-xor on strings; when we
want to emphasize that the operation is applied to sin-
gle bits we will usually denote it by either + or −. We use
◦ to denote concatenation.

Construction 4.5 Let Cn be a circuit that computes fn.
Then, we define f̂n(x, (r,W)) to be the concatenation of
the following functions.

Input wires: For an input wire i, labeled by a literal �,
which is either some variable xu or its negation, we ap-
pend the function W �

i ◦ (� + ri).

Gates: Let t ∈ [Γ(n)] be a gate that computes the func-
tion g ∈ {AND,OR} with input wires i, j and output wires
y1, . . . , ym. We associate with this gate 4 functions that are
referred to as gate labels. Specifically, for each of the 4
choices of ai, aj ∈ {0, 1}, we define a corresponding func-
tion. This function can be thought of as the entry that is in-
dexed by (ai, aj) in the garbled truth table of the gate. It is

defined as follows:

Q
ai,aj

t (r,W) def= E
W

ai−ri,aj
i ⊕W

aj−rj,ai
j

(

W g(ai−ri,aj−rj)
y1

◦ (g(ai − ri, aj − rj) + ry1)
◦ . . . ◦W g(ai−ri,aj−rj)

ym
◦ (g(ai − ri, aj − rj) + rym

)),

where E is a one-time symmetric encryption algorithm.
That is, the signals and the masked bits of all the output
wires of this gate are encrypted under a key that depends on
the signals of the input wires of the gate. Note that Q

ai,aj

t

depends only on the random inputs. We refer to the label
Q

ci,cj

t that is indexed by the masked bits of the input wires
as an on-path label, and to the other three labels as the off-
path labels.

Output wires: For each output wire i of the circuit, we add
the mask of this wire ri.

It is not hard to verify that f̂n is in NC0[E]. In partic-
ular, observe that a term of the form W �

i , where � is a lit-
eral, is a 3-local function that each of its bits depends on �
and the corresponding bits of W 1

i and W 0
i . Similarly, the

keys that are used in the encryptions are 8-local functions,
and the encrypted messages are 6-local functions.

We will now analyze the complexity of f̂n. For each wire
the construction uses O(k) random bits, in addition each in-
vocation of the encryption uses poly(k) random bits. Since
there are O(|Cn|) invocations, the randomness complex-
ity is O(|Cn|) · poly(k) = O(|Cn| · nε) for an arbitrary
constant ε > 0. The output complexity is dominated by
the gate labels, which are strings of length poly(k), since
there are O(|Cn|) such labels the output complexity is also
O(|Cn|) · poly(k), and thus the overall complexity of f̂ is
O(|Cn| · nε).

Let µ(n), s(n) be the randomness complexity and the
output complexity of f̂n respectively. We claim that the
function family f̂ = {f̂n : {0, 1}n × {0, 1}µ(n) →
{0, 1}s(n)}n∈N defined above is indeed a computationally
randomized encoding of the family f . We start with per-
fect correctness.

Lemma 4.6 (Perfect correctness) There exists a polyno-
mial time decoder algorithm B such that for every n ∈ N

and every x ∈ {0, 1}n and (r,W) ∈ {0, 1}µ(n), it holds
that B(1n, f̂n(x, (r,W))) = fn(x).

Proof: Let α = f̂n(x, (r,W)) for some x ∈ {0, 1}n
and (r,W) ∈ {0, 1}µ(n). Given α we show how to effi-
ciently compute the on-path signal W bi

i and masked value
ci of every wire i in the circuit. In particular, by obtain-
ing ci for an output wire i, we can retrieve the mask ri from
α and compute the corresponding output bit of fn(x), i.e.,
output bi = ci − ri. (Recall that the masks of the output
wires are given explicitly as part of α.) The on-path signals

and the masked values of every wire are computed by scan-
ning the circuit from bottom to top.

For an input wire i the desired value, W bi
i ◦ ci, is given

as part of α. Next, consider a wire y that goes out of a
gate t, and assume that we have already computed the de-
sired values of the input wires i, j of this gate. We use
the masked bits ci, cj of the input wires, to select the on-
path label Q

ci,cj

t of the gate t (and ignore the other 3 off-
path labels of this gate). Consider this label as in Equa-
tion (4.1); recall that this cipher was encrypted under the
key W

ci−ri,cj

i ⊕W
cj−rj ,ci

j = W
bi,cj

i ⊕W
bj ,ci

j . Since we

have already computed the values ci, cj ,W
bi
i and W

bj

j , we
can decrypt the label Q

ci,cj

t , (by applying the decryption al-
gorithm D) and recover the encrypted string, that includes,
in particular, the value W

g(bi,bj)
y ◦ (g(bi, bj) + ry), where

g is the function that gate t computes. Since by definition
by = g(bi, bj), the decrypted string contains the desired
value.

To argue computational privacy we need to prove the fol-
lowing lemma, whose proof is deferred to Appendix A.

Lemma 4.7 (Computational privacy) There exists a
probabilistic polynomial-time simulator S, such that for
any family of strings {xn}n∈N, |xn| = n, it holds that
S(1n, fn(xn))

c≡ f̂n(xn, Uµ(n)).

Remark 4.8 (Information-theoretic variant) Construc-
tion 4.5 can be instantiated with a perfect (information-
theoretic) encryption scheme, yielding a perfectly private
randomized encoding. (The privacy proof given in Ap-
pendix A can be easily modified to treat this case.) How-
ever, in such an encryption the key must be as long as
the encrypted message [27]. It follows that the wires’ sig-
nal length grows exponentially with their distance from
the outputs, rendering the construction efficient only for
NC1 circuits. This information-theoretic variant of the gar-
bled circuit construction was previously suggested in [18].
We will use it in Section 4.3 for obtaining a computa-
tional encoding with a parallel decoder.

4.3. Main Results

Combining Lemmas 4.6, 4.7, and 4.4 we get an NC0 en-
coding of any efficiently computable function using an ora-
cle to a minimal PRG.

Theorem 4.9 Suppose f is computed by a uniform fam-
ily {Cn} of polynomial-size circuits. Let G be a (minimal)
PRG. Then, f admits a perfectly correct computational en-
coding f̂ in NC0[G]. The complexity of f̂ is O(|Cn| · nε)
(for an arbitrary constant ε > 0).

We turn to the question of eliminating the PRG oracles.
We follow the natural approach of replacing each oracle

with an NC0 implementation. (A more general but less di-
rect approach will be described in Remark 4.13.) Using [1,
Theorem 6.2], a minimal PRG in NC0 is implied by a PRG
in PREN , and in particular by a PRG in NC1 or even
⊕L/poly. Thus, we can base our main theorem on the fol-
lowing “easy PRG” assumption.

Assumption 4.10 (Easy PRG (EPRG)) There exists a
PRG in ⊕L/poly.

As discussed in Section 1.1, EPRG is a very mild as-
sumption. In particular, it is implied by most standard cryp-
tographic intractability assumptions, and is also implied
by the existence in ⊕L/poly of one-way permutations and
other types of one-way functions.

Combining Theorem 4.9 with the EPRG assumption, we
get a computational encoding in NC0 for every efficiently
computable function. To optimize its parameters we apply a
final step of perfect encoding, yielding a computational en-
coding with degree 3 and locality 4 (see Remark 3.6). Thus,
we get the following main theorem.

Theorem 4.11 Suppose f is computed by a uniform fam-
ily {Cn} of polynomial-size circuits. Then, under the EPRG
assumption, f admits a perfectly correct computational en-
coding f̂ of degree 3, locality 4 and complexity O(|Cn| ·nε)
(for an arbitrary constant ε > 0).

Corollary 4.12 Under the EPRG assumption, CREN =
BPP.

Proof: Let f(x) be a function in BPP. It follows that
there exists a function f ′(x, z) ∈ P such that for every
x ∈ {0, 1}n it holds that Prz[f ′(x, z) �= f(x)] ≤ 2−n.
Let f̂ ′((x, z), r) be the NC0 computational encoding of f ′

promised by Theorem 4.11. It follows that f̂(x, (z, r)) def=
f̂ ′((x, z), r) is a computational encoding of f in NC0.

Conversely, suppose f ∈ CREN and let f̂ be an NC0

computational encoding of f . A BPP algorithm for f can
be obtained by first computing ŷ = f̂(x, r) on a random r
and then invoking the decoder on ŷ to obtain the output y =
f(x) with high probability.

Remark 4.13 (Relaxing the EPRG assumption) The
EPRG assumption is equivalent to the existence of a
PRG in NC0 or in PREN . It is possible to base The-
orem 4.11 on a seemingly more liberal assumption by
taking an alternative approach that does not rely on a per-
fect encoding. The idea is to first replace each PRG or-
acle with an implementation G from some class C, and
only then apply a (perfectly correct) statistical encod-
ing to the resulting NC0[G] circuit. Thus, we need G to be
taken from a class C such that NC0[C] ⊆ SREN . It fol-
lows from [18, 1] that the class NL/poly satisfies this
property (and furthermore, functions in NL/poly ad-
mit a statistical NC0 encoding with perfect correctness).

Thus, we can replace ⊕L/poly in the EPRG assump-
tion with NL/poly.

On the parallel complexity of the decoder. As we shall see
in Section 5, it is sometimes useful to obtain a computa-
tional encoding whose decoder is also parallelized. By the
description of the decoder of Construction 4.5, it follows
that if the circuit computing f is an NCi circuit then the de-
coder is in NCi[D], where D is the decryption algorithm.
Thus, if D is in NCj we obtain a parallel decoder in NCi+j .
Unfortunately, we cannot use the parallel symmetric en-
cryption scheme of Construction 4.2 for this purpose be-
cause of its sequential decryption.

We can get around this problem by strengthening the
EPRG assumption. Suppose we have a polynomial-stretch
PRG in NC1. (This is implied by some standard crypto-
graphic assumptions, see [24].) In such a case, we can ob-
tain a one-time symmetric encryption scheme (E,D) (for
messages of a fixed polynomial length) in which both E
and D are in NC1. To encrypt a message we simply ap-
ply the generator to the key and mask the result with the
plaintext message; decryption is implemented analogously.
Our goal is to turn this into a scheme (Ê, D̂) in which
the encryption Ê is in NC0 and the decryption is still in
NC1. We achieve this by applying to (E,D) the encod-
ing given by the information-theoretic variant of the gar-
bled circuit construction (see Remark 4.8 or [18]). That is,
Ê is a (perfectly correct and private) NC0 encoding of E,
and D̂ is obtained by composing D with the decoder of the
information-theoretic garbled circuit. (The resulting scheme
(Ê, D̂) is still a secure encryption scheme, see [1] or Exam-
ple 5.1.) Since the symmetric encryption employed by the
information-theoretic garbled circuit is in NC0, its decoder
can be implemented in NC1[NC0] = NC1. Thus, D̂ is also
in NC1. Combining this encryption scheme with Construc-
tion 4.5, we get a computational encoding of a function
f ∈ NCi with encoding in NC0 and decoding in NCi+1.
Summarizing, we have the following:

Claim 4.14 Suppose there exists a PRG with polynomial
stretch in NC1 (i.e., a PRG that stretches k bits into kc bits
for some c > 1). Then, every function f ∈ NCi admits
a perfectly-correct computational encoding in NC0 whose
decoder is in NCi+1.

5. Applications

5.1. Relaxed Assumptions for Cryptography in
NC0

In [1] it was shown that, under relatively mild assump-
tions, many cryptographic tasks can be implemented in
NC0. This was proved by arguing that: (1) the security of
most primitives is inherited by their statistical or perfect

randomized encoding; and (2) perfect or statistical encod-
ings can be obtained for functions in relatively high com-
plexity classes such as NC1, ⊕L/poly or NL/poly. Thus,
if a primitive P can be computed in these classes, then it
can also be computed in NC0.

In this work, we consider primitives whose security is
also inherited by their computational encoding. (In some
cases we will need to rely on perfect correctness, which
we get “for free” in our main construction.) It follows from
Theorem 4.11 that, under the EPRG assumption, any such
primitive P can be computed in NC0 if it exists at all (i.e.,
can be computed in polynomial time).

Some primitives, such as collision resistant hash func-
tions and one-way permutations, do not respect computa-
tional encoding. However, many others do. These include
public-key encryption, symmetric encryption,7 com-
mitments,8 signatures, message authentication schemes
(MACs), and non-interactive zero knowledge proofs
(NIZK). (See [10, 11] for detailed definitions of these cryp-
tographic primitives.) In all these cases, we can replace the
sender (i.e., the encrypting party, committing party, signer
or prover, according to the case) with its computational en-
coding and let the receiver (the decrypting party or veri-
fier) use the decoding algorithm to translate the output of
the new sender to an output of the original one. The se-
curity of the resulting scheme reduces to the security of
the original one by using the efficient simulator. These re-
ductions are analogous to those given in [1] for the case
of statistical encoding. For completeness, we sketch be-
low the construction and security proof for the case of
public-key encryption.

Example 5.1 (Public-key encryption) Suppose that
E = (G,E,D) is a (probabilistic) public-key encryp-
tion scheme, where G is a key-generation algorithm gen-
erating a pair (e, d) of encryption and decryption keys,
E(e,m, r) is the encryption function that encrypts the mes-
sage m using the key e and randomness r, and D(d, y) is
the decryption function that decrypts the cipher y using the
decryption key d. The encryption function E should be se-
mantically secure as in Definition 4.1, except that here the
distinguisher is also given the public key e. Let Ê be a ran-
domized encoding of E, and let D̂(d, ŷ) def= D(d,B(ŷ)) be
the composition of D with the decoder B of the encod-
ing Ê. We argue that the scheme Ê def= (G, Ê, D̂) is also
a public-key encryption scheme. The efficiency and cor-
rectness of Ê are guaranteed by the efficiency of the en-
coding and its correctness. The security of Ê reduces to
that of E using the efficient simulator S of Ê. This is ar-

7 See Footnote 4.
8 In this work we refer to computationally hiding commitments. Com-

putational encoding does not respect the security of statistically hiding
commitments.

gued as follows. Given a distinguisher Â which efficiently
distinguishes between encryptions under Ê of mes-
sages x, x′, we obtain a similar distinguisher A for E
by letting A(e, y) = Â(e, S(y)). By computational pri-
vacy, if y is a random encryption of m under E with a key e,
then S(y) is computationally indistinguishable from a ran-
dom encryption of m under Ê with the same key e. It
follows that if Â has a non-negligible advantage distin-
guishing between encryptions of x and x′, then so does
A.

A transformation as above can be used to construct an
NC0 sender, but does not promise anything concerning the
parallel-time complexity of the receiver. In the following,
we argue that 1) for some primitives the parallel complex-
ity at the receiver’s end can also be improved, and 2) for
other primitives, we can implement the sender in NC0 with-
out substantial increase in the parallel complexity of the re-
ceiver.

Consider first the case of commitment. As argued in [1],
in this case we can also improve the complexity at the re-
ceiver’s end to AC0. Indeed, the sender can decommit by
sending its random coins, and the receiver needs only to em-
ulate the computation of the sender and compare it with the
message it received in the commit stage. Thus, the receiver
can be implemented as an NC0 circuit with a single un-
bounded fan-in AND gate. Such a commitment scheme can
then be used to implement coin flipping over the phone [4]
between an NC0 circuit and an AC0 circuit.

We summarize some consequences of the EPRG as-
sumption obtained so far.

Theorem 5.2 Suppose that the EPRG assumption holds.
Then,

• If there exists a public-key encryption (resp., NIZK)
scheme, then there exists such a scheme in which the
encryption (prover) algorithm is in NC0

4.

• There exists a stateless symmetric encryption scheme
(resp., digital signature or MAC) in which the encryp-
tion (signing) algorithm is in NC0

4.

• There exists a commitment scheme (resp., coin-flipping
protocol) in which the sender (first party) is in NC0

4

and the receiver (second party) is in AC0.

Note that the existence of all the above primitives, except of
public-key encryption and NIZK, does not require any addi-
tional assumption other than EPRG. This is a consequence
of the fact that they all can be constructed (in polynomial
time) from a PRG (see [10, 11]). For these primitives, we
obtain more general (unconditional) results in the next sub-
section.

Theorem 5.2 reveals an interesting phenomenon. It ap-
pears that several cryptographic primitives can be imple-
mented in NC0 despite the fact that their standard construc-

tions rely on pseudorandom functions (PRFs) [12], which
cannot be computed even in AC0 [20]. For such primitives,
we actually construct a sequential PRF from the PRG (as
in [12]), use it as a building block to obtain a sequential con-
struction of the desired primitive (e.g., symmetric encryp-
tion), and finally reduce the parallel-time complexity of the
resulting function using our machinery. Of course, the secu-
rity of the PRF primitive itself is not inherited by its com-
putational (or even perfect) encoding.

Parallelizing the receiver. As mentioned above, the compu-
tational encoding promised by Theorem 4.11 does not sup-
port parallel decoding. Thus, we get primitives in which the
sender is in NC0 but the receiver is not known to be in NC,
even if we started with a primitive that has an NC receiver.
The following theorem tries to partially remedy this state
of affairs. Assuming the existence of a PRG with a good
stretch in NC1, we can rely on Claim 4.14 to convert sender-
receiver schemes in which both the receiver and the sender
are in NC to ones in which the sender is in NC0 and the re-
ceiver is still in NC.

Theorem 5.3 Let X = (G,S,R) be a sender-receiver
cryptographic scheme, where G is a key-generation algo-
rithm, S ∈ NCs is the algorithm of the sender and R ∈
NCr is the algorithm of the receiver. SupposeX implements
a primitive P whose security is respected by computational
encoding. Suppose further that there exists a polynomial-
stretch PRG in NC1. Then there exists a scheme X̂ =
(G, Ŝ, R̂) that securely implements the same cryptographic
task as X , and in which Ŝ ∈ NC0 and R̂ ∈ NCmax{s+1,r}.

Proof: If there exists a polynomial-stretch PRG in NC1,
then we can use Claim 4.14 and get a computational encod-
ing Ŝ for S in NC0 whose decoder B is in NCs+1. As usual,
the new receiver R̂ uses B to decode the encoding, and then
applies the original receiver R to the result. Thus, R̂ is in
NCmax{s+1,r}.

Alternatively, it is possible to relax the above assump-
tion to the existence of a linear-stretch PRG in NC1, at
the cost of increasing the complexity of the receiver to
NCmax{s+2,r}.

5.2. Parallel Reductions between Cryptographic
Primitives

In the previous section we showed that many crypto-
graphic tasks can be performed in NC0 if they can be per-
formed at all, relying on the assumption that an easy PRG
exists. Although EPRG is a very reasonable assumption, it
is natural to ask what types of parallel reductions between
primitives can be guaranteed unconditionally. In particular,
such reductions would have consequences even if there ex-
ists a PRG in, say, NC4.

In this section, we consider the types of unconditional re-
ductions that can be obtained using the machinery of Sec-
tion 4. We focus on primitives that can be reduced to a PRG
(equivalently, using [16], to a one-way function). We argue
that for any such primitiveF , its polynomial-time reduction
to a PRG can be collapsed into an NC0-reduction to a PRG.
More specifically, we present an efficient “compiler” that
takes the code of an arbitrary PRG G and outputs a descrip-
tion of an NC0 circuit C, having oracle access to a function
G′, such that for any (minimal) PRG G′ the circuit C[G′]
implements F .

A compiler as above proceeds as follows. Given the code
of G, it first constructs a code for an efficient implementa-
tion f of F . (In case we are given an efficient black-box re-
duction from F to a PRG, this code is obtained by plugging
the code of G into this reduction.) Then, applying a con-
structive form of Theorem 4.9 to the code of f , the compiler
obtains a code f̂ of an NC0 circuit which implements F by
making an oracle access to a PRG. This code of f̂ defines
the required NC0 reduction from F to a PRG, whose spec-
ification depends on the code of the given PRG G. Thus,
the reduction makes a non-black-box use of the PRG prim-
itive, even if the polynomial-time reduction it is based on is
fully black-box.

Based on the above we can obtain the following informal
“meta-theorem”:

Meta-Theorem 5.4 Let F be a cryptographic primitive
whose security is respected by computational encoding.
Suppose that F is polynomial-time reducible to a PRG.
Then, F is NC0-reducible to a (minimal) PRG.

Since a minimal PRG can be reduced in NC0 to one-way
permutations or one-way functions with efficiently com-
putable “entropy” (see [16, 1, 29]), the minimal PRG in the
conclusion of the above theorem can be replaced by these
primitives.

Instantiating F by concrete primitives, we get the fol-
lowing corollary:

Corollary 5.5 Let G be a PRG. Then,

• There exists a stateless symmetric encryption scheme
(resp., digital signature or MAC) in which the encryp-
tion (signing) algorithm is in NC0[G].

• There exists a commitment scheme (resp., coin-flipping
protocol) in which the sender (first party) is in NC0[G]
and the receiver (second party) is in AC0[G].

Note that the last two items of Theorem 5.2 can be de-
rived from the above corollary, up to the exact locality.

The above results can be used to improve the paral-
lel complexity of some known reductions. For example,
Naor [21] shows a commitment scheme in which the sender
is in NC0[LG], where LG is a linear-stretch PRG. By using
his construction, we derive a commitment scheme in which

the sender (respectively, the receiver) is in NC0[G] (respec-
tively, AC0[G]) where G is a minimal PRG. Since it is not
known how to NC-reduce a linear-stretch PRG to a mini-
mal PRG, we get a nontrivial parallel reduction.

Other interesting examples arise in the case of primi-
tives that are based on PRFs, such as MACs, symmetric
encryption, and identification (see [12, 23, 11] for these
and other applications of PRFs). Since the known construc-
tion of a PRF from a PRG is sequential [12], it was not
known how to reduce these primitives in parallel to (even
a polynomial-stretch) PRG. This fact motivated the study
of parallel constructions of PRFs in [23, 24]. In particu-
lar, Naor and Reingold [23] introduce a new cryptographic
primitive called a synthesizer (SYNTH), and show that
PRFs can be implemented in NC1[SYNTH]. This gives an
NC1-reduction from cryptographic primitives such as sym-
metric encryption to synthesizers. By Corollary 5.5, we get
that these primitives are in fact NC0-reducible to a PRG.
Since (even a polynomial-stretch) PRG can be implemented
in NC0[SYNTH] while synthesizers are not known to be
even in NC[PRG], our results improve both the complexity
of the reduction and the underlying assumption. It should
be noted, however, that our reduction only improves the
parallel-time complexity of the encrypting party, while the
constructions of [23] yield NC1-reductions on both ends.
(A partial and conditional workaround is given by Theo-
rem 5.3.)

5.3. Secure Multi-Party Computation

Secure multi-party computation (MPC) allows several
parties to evaluate a function of their inputs in a distrib-
uted way, so that both the privacy of their inputs and the
correctness of the outputs are maintained. These properties
should hold, to the extent possible, even in the presence of
an adversary who may corrupt at most t parties. This is typ-
ically formalized by comparing the adversary’s interaction
with the real process, in which the uncorrupted parties run
the specified protocol on their inputs, with an ideal func-
tion evaluation process in which a trusted party is employed.
The protocol is said to be secure if whatever the adversary
“achieves” in the real process it could have also achieved by
corrupting the ideal process. A bit more precisely, it is re-
quired that for every adversary A interacting with the real
process there is an adversary A′ interacting with the ideal
process, such that outputs of these two interactions are in-
distinguishable from the point of view of an external envi-
ronment. See, e.g., [6, 7, 11], for more detailed and concrete
definitions.

There is a variety of different models for secure compu-
tation. These models differ in the power of the adversary,
the network structure, and the type of “environment” that
tries to distinguish between the real process and the ideal

process. In the information-theoretic setting, both the ad-
versary and the distinguishing environment are computa-
tionally unbounded, whereas in the computational setting
they are both bounded to probabilistic polynomial time.

The notion of randomizing polynomials was originally
motivated by the goal of minimizing the round complex-
ity of MPC. The motivating observation of [17] was that the
round complexity of most general protocols from the liter-
ature (e.g., those of [14, 3, 8]) is related to the degree of
the function being computed. Thus, by reducing the task of
securely computing f to that of securely computing some
related low-degree function, one can obtain round-efficient
protocols for f .

Randomizing polynomials (or low-degree randomized
encodings) provide precisely this type of reduction. More
specifically, suppose that the input x to f is distributed be-
tween the parties, who wish to all learn the output f(x). If f

is represented by a vector f̂(x, r) of degree-d randomizing
polynomials, then the secure computation of f can be non-
interactively reduced to that of f̂ , where the latter is viewed
as a randomized function of x. This reduction only requires
each party to invoke the decoder of f̂ on its local output, ob-
taining the corresponding output of f . The secure compu-
tation of f̂ , in turn, can be non-interactively reduced to that
of a related deterministic function f̂ ′ of the same degree d.
The idea is to let f̂ ′(x, r1, . . . , rt+1) def= p(x, r1+. . .+rt+1)
(where t is a bound on the number of corrupted parties), as-
sign each input vector rj to a distinct player, and instruct it
to pick it at random. (See [17] for more details.) This sec-
ond reduction step is also non-interactive. Thus, any secure
protocol for f̂ ′ or f̂ gives rise to a secure protocol for f
with the same number of rounds. The non-interactive na-
ture of the reduction makes it insensitive to almost all as-
pects of the security model.

Previous constructions of (perfect or statistical) ran-
domizing polynomials [17, 18, 9] provided information-
theoretic reductions of the type discussed above. In partic-
ular, if the protocol used for evaluating f̂ ′ is information-
theoretically secure, then so is the resulting protocol for
f . The main limitation of these previous reductions is that
they efficiently apply only to restricted classes of func-
tions, typically related to different log-space classes. This
situation is remedied in the current work, where we ob-
tain (under the EPRG assumption) a general secure reduc-
tion from a function f to a related degree-3 function f̂ ′.
The main price we pay is that the security of the reduction
is no longer information-theoretic. Thus, even if the under-
lying protocol for f̂ ′ is secure in the information-theoretic
sense, the resulting protocol for f will only be computa-
tionally secure.

Formulating the above using the terminology of re-
ductions between secure functionalities (cf. [11]), Theo-
rem 4.11 has the following corollary.

Theorem 5.6 Suppose the EPRG assumption holds. Let
f(x) be an m-party functionality computed by a (uniform)
circuit family of size s(n). Then, for any ε > 0, there is a
non-interactive, computationally (m− 1)-secure reduction
from f to either of the following two efficient functionali-
ties:

• A randomized functionality f̂(x, r) of degree 3 (over
GF(2)) with a random input and output of length
O(s(n) · nε) each;

• A deterministic functionality f̂ ′(x′) of degree 3 (over
GF(2)) with input length O(m · s(n) · nε) and output
length O(s(n) · nε).

Both reductions are non-interactive in the sense that they
involve a single call to f̂ or f̂ ′ and no further interaction.
They both apply regardless of whether the adversary is pas-
sive or active, adaptive or non-adaptive.

A high-level corollary of Theorem 5.6 is that computing
arbitrary polynomial-time computable functionalities is as
easy as computing degree-3 functionalities. Thus, when de-
signing new MPC protocols, it suffices to consider degree-3
functionalities which are often easier to handle.

More concretely, Theorem 5.6 gives rise to new, con-
ceptually simpler, constant-round protocols for general
functionalities. For instance, a combination of this re-
sult with the “BGW protocol” [3] gives a simpler al-
ternative to the constant-round protocol of Beaver, Mi-
cali, and Rogaway [2]. The resulting protocol will be more
round-efficient, and in some cases (depending on the num-
ber of parties and the “easiness” of the PRG) even more
communication-efficient than the protocol of [2]. On
the downside, Theorem 5.6 relies on a stronger assump-
tion than the protocol from [2] (an easy PRG vs. an arbi-
trary PRG).

An interesting open question, which is motivated mainly
from the point of view of the MPC application, is to come
up with an “arithmetic” variant of the construction. That
is, given an arithmetic circuit C, say with addition and
multiplication gates, construct a vector of computationally
private randomizing polynomials of size poly(|C|) which
makes a black-box use of the underlying field. The latter re-
quirement means that the same polynomials should repre-
sent C over any field, ruling out the option of simulating
arithmetic field operations by boolean operations. Such a
result is known for weaker arithmetic models such as for-
mulas and branching programs (see [9]).

Acknowledgment. We thank Omer Reingold for helpful dis-
cussions.

References

[1] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography
in NC0. In Proc. 45st FOCS, pages 166–175, 2004.

[2] D. Beaver, S. Micali, and P. Rogaway. The round complex-
ity of secure protocols (extended abstract). In Proc. of 22nd
STOC, pages 503–513, 1990.

[3] M. Ben-Or, S. Goldwasser, and A. Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distrib-
uted computation. In Proc. of 20th STOC, pages 1–10, 1988.

[4] M. Blum. Coin flipping by telephone: a protocol for solving
impossible problems. SIGACT News, 15(1):23–27, 1983.

[5] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM J. Comput.,
13:850–864, 1984. Preliminary version in FOCS 82.

[6] R. Canetti. Security and composition of multiparty crypto-
graphic protocols. J. Cryptology, 13(1):143–202, 2000.

[7] R. Canetti. Universally composable security: A new para-
digm for cryptographic protocols. In Proc. 42st FOCS, pages
136–145, 2001.

[8] D. Chaum, C. Crépeau, and I. Damgård. Multiparty uncon-
ditionally secure protocols (extended abstract). In Proc. of
20th STOC, pages 11–19, 1988.

[9] R. Cramer, S. Fehr, Y. Ishai, and E. Kushilevitz. Efficient
multi-party computation over rings. In Proc. EUROCRYPT
’03, pages 596–613, 2003.

[10] O. Goldreich. Foundations of Cryptography: Basic Tools.
Cambridge University Press, 2001.

[11] O. Goldreich. Foundations of Cryptography: Basic Applica-
tions. Cambridge University Press, 2004.

[12] O. Goldreich, S. Goldwasser, and S. Micali. How to con-
struct random functions. J. of the ACM., 33:792–807, 1986.

[13] O. Goldreich and L. Levin. A hard-core predicate for all
one-way functions. In Proc. 21st STOC, pages 25–32, 1989.

[14] O. Goldreich, S. Micali, and A. Wigderson. How to play any
mental game (extended abstract). In Proc. of 19th STOC,
pages 218–229, 1987.

[15] S. Goldwasser and S. Micali. Probabilistic encryption. JCSS,
28(2):270–299, 1984. Preliminary version in Proc. STOC
’82.

[16] J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby. A
pseudorandom generator from any one-way function. SIAM
J. Comput., 28(4):1364–1396, 1999.

[17] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A
new representation with applications to round-efficient se-
cure computation. In Proc. 41st FOCS, pages 294–304,
2000.

[18] Y. Ishai and E. Kushilevitz. Perfect constant-round secure
computation via perfect randomizing polynomials. In Proc.
29th ICALP, pages 244–256, 2002.

[19] Y. Lindell and B. Pinkas. A proof of Yao’s protocol for se-
cure two-party computation. Electronic Colloquium on Com-
putational Complexity, 11(063), 2004.

[20] N. Linial, Y. Mansour, and N. Nisan. Constant depth circuits,
fourier transform, and learnability. J. ACM, 40(3):607–620,
1993. Preliminary version in Proc. 30th FOCS, 1989.

[21] M. Naor. Bit commitment using pseudorandomness. J. of
Cryptology, 4:151–158, 1991.

[22] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auc-
tions and mechanism design. In Proc. 1st ACM Conference
on Electronic Commerce, pages 129–139, 1999.

[23] M. Naor and O. Reingold. Synthesizers and their applica-
tion to the parallel construction of pseudo-random functions.
J. of Computer and Systems Sciences, 58(2):336–375, 1999.
Preliminary version in Proc. 36th FOCS, 1995.

[24] M. Naor and O. Reingold. Number-theoretic constructions
of efficient pseudo-random functions. J. ACM, 51(2):231–
262, 2004. Preliminary version in Proc. 38th FOCS, 1997.

[25] O. Reingold, L. Trevisan, and S. Vadhan. Notions of re-
ducibility between cryptographic primitives. In TCC ’04,
volume 2951 of LNCS, pages 1–20, 2004.

[26] P. Rogaway. The Round Complexity of Secure Protocols.
PhD thesis, MIT, June 1991.

[27] C. E. Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, 28-4:656–715, 1949.

[28] S. R. Tate and K. Xu. On garbled circuits and constant
round secure function evaluation. CoPS Lab Technical Re-
port 2003-02, University of North Texas, 2003.

[29] E. Viola. On parallel pseudorandom generators. Electronic
Colloquium on Computational Complexity, 11(074), 2004.
To appear in 20th IEEE Conference on Computational Com-
plexity.

[30] A. Wigderson. NL/poly ⊆ ⊕L/poly. In Proc. 9th Struc-
ture in Complexity Theory Conference, pages 59–62, 1994.

[31] A. C. Yao. Theory and application of trapdoor functions. In
Proc. 23rd FOCS, pages 80–91, 1982.

[32] A. C. Yao. How to generate and exchange secrets. In Proc.
27th FOCS, pages 162–167, 1986.

A. Proof of Lemma 4.7

The simulator. We start with the description of the simula-
tor S. Given 1n and fn(x) for some x ∈ {0, 1}n, the sim-
ulator chooses for every wire i of the circuit Cn a random
string W bi

i , and a random bit ci. For an input wire i, the sim-
ulator outputs W bi

i ◦ci. For a gate t with input wires i, j and
output wires y1, . . . ym the simulator computes the on-path

label Q
ci,cj

t = E
W

bi,cj
i ⊕W

bj,ci
j

(W by1
y1 ◦ cy1 ◦ . . . ◦W

bym
ym ◦

cym
) and sets the other three off-path labels of this gate to be

encryptions of all-zeros strings of appropriate length under
random keys; that is, for every two bits (ai, aj) �= (ci, cj),
the simulator chooses uniformly a k(n)-bit string Rai,aj

and outputs Q
ai,aj

l = ERai,aj
(0|W

by1
y1 ◦cy1◦...◦W

bym
ym ◦cym |).

Finally, for an output wire i, the simulator outputs ri =
ci − bi (recall that bi is known since fn(x) is given).

Since Cn can be constructed in polynomial-time and
since the encryption algorithm runs in polynomial time the
simulator is also a polynomial-time algorithm. We refer to
the gate labels constructed by the simulator as “fake” gate
labels and to gate labels of f̂n as “real” gate labels.

Assume, towards a contradiction, that there exists a (non-
uniform) polynomial-size circuit family {An}, a polyno-
mial p(·), and a string family {xn}, |xn| = n, such that An

distinguishes between the distributions S(1n, fn(xn)) and

f̂n(xn, Uµ(n)) with non-negligible advantage ε(n). We con-
struct a sequence of hybrid distributions that depend on xn,
and mix “real” gates labels and “fake” ones, such that one
endpoint corresponds to the simulated output (in which all
the gates have “fake” labels) and the other endpoint corre-
sponds to f̂n(xn, Uµ(n)) (in which all the gates have real la-
bels). If the extreme hybrids can be efficiently distinguished
then there must be two neighboring hybrids that can be effi-
ciently distinguished. We show that such a distinguisher can
be used to break the encryption hence deriving a contradic-
tion.

The hybrids Hn
t . First, fix n and let k = k(n). Next, we or-

der the gates of Cn in topological order. That is, if the gate
t uses the output of gate t′, then t′ < t. Now, for every
t = 0, . . . ,Γ(n), we define the hybrid algorithm Hn

t that
constructs “fake” labels for the first t gates and “real” la-
bels for the rest of the gates:

1. For every wire i uniformly choose two k-bit strings
W bi

i ,W 1−bi
i and a random bit ci.

2. For every input wire i output W bi
i ◦ ci.

3. For every gate t′ ≤ t with input wires i, j and output
wires y1, . . . , ym output

Q
ci,cj

t′ = E
W

bi,cj
i ⊕W

bj,ci
j

(W by1
y1 ◦cy1◦. . .◦W bym

ym ◦cym
),

and for every choice of (ai, aj) ∈ {0, 1}2 that
is different from (ci, cj), uniformly choose
a k-bit string Rai,aj

and output Q
ai,aj

t′ =

ERai,aj
(0|W

by1
y1 ◦cy1◦...◦W

bym
ym ◦cym |).

4. For every gate t′ > t, let g be the function that t′ com-
putes (AND or OR), let i, j be the input wires of t′ and
let y1, . . . ym be its output wires. Use xn to compute
the value of bi(xn), bj(xn), and set ri = ci − bi and
rj = cj − bj . For every choice of (ai, aj) ∈ {0, 1}2,
compute Q

ai,aj

t′ exactly as in Equation 4.1, and out-
put it.

5. For every output wire i compute bi and output ri =
ci − bi.

First, observe that Hn
t runs in polynomial time

(when xn is given). Second, note that this hybrid algo-
rithm uses the string xn only when constructing real la-
bels, that is in Step 4. Steps 1–3 can be performed without
any knowledge on xn, and Step 5 requires only the knowl-
edge of fn(xn). Obviously, the algorithm Hn

Γ(n) is just
a different description of the simulator S, and there-
fore S(1n, fn(xn)) ≡ Hn

Γ(n). We also claim that the
second extreme hybrid, Hn

0 coincides with the distribu-
tion of the “real” encoding, f̂n(xn, Uµ(n)). To see this note
that (1) the strings W 0

i ,W 1
i are chosen uniformly and in-

dependently by Hn
0 , as they are in f̂n(xn, Uµ(n)); and

(2) since Hn
0 chooses the ci’s uniformly and indepen-

dently and sets ri = ci − bi then the ri’s themselves
are also distributed uniformly and independently ex-
actly as they are in f̂n(xn, Uµ(n)). Since for every gate
t the value of Q

ai,aj

t is a function of the random vari-
ables, and since it is computed by Hn

0 in the same way as
in f̂n(xn, Uµ(n)), we get that Hn

0 ≡ f̂n(xn, Uµ(n)).
Since An can distinguish the extreme hybrids with non-

negligible advantage ε(n) and since the number of hybrids
(i.e., the size of Cn) is polynomial in n, it follows that An

can also distinguish some neighboring hybrids with non-
negligible advantage; namely, there exists some 0 ≤ t ≤
Γ(n)− 1 such that Cn distinguishes between Hn

t and Hn
t+1

with advantage ε′(n) ≥ ε(n)/Γ(n). We use An, xn, t to
construct an adversary that breaks the encryption E.

Let i, j be the input wires of the gate t, let y1, . . . , ym be
the output wires of t, let g be the function that gate t com-
putes, and let bi, bj , by1 , . . . , bym

be the values of the cor-
responding wires induced by the input xn. For σ ∈ {0, 1},
define the distribution ensemble Pn(σ) as the output distri-
bution of the following random process:

• Uniformly choose the k-bit strings W bi
i ,W

bj

j ,W
by1
y1 ,

W
1−by1
y1 , . . . ,W

bym
ym ,W

1−bym
ym , and the random bits

ci, cj , cy1 , . . . , cym
.

• If σ = 0 then set Q
ci,cj

t and the other three Q
ai,aj

t ex-
actly as in Step 3 of Hn

t .

• If σ = 1 then uniformly choose W 1−bi
i ,W

1−bj

j , set
ri = ci − bi, rj = cj − bj , and for every choice of
(ai, aj) ∈ {0, 1}2, set Q

ai,aj

t exactly as in Step 4 of
Hn

t , that is:

Q
ai,aj
t = E

W
ai−ri,aj
i ⊕W

aj−rj,ai
j

(W
g(ai−ri,aj−rj)
y1

◦ g(ai − ri, aj − rj) + ry1 ◦ . . . ◦ W
g(ai−ri,aj−rj)
ym

◦ g(ai − ri, aj − rj) + rym)

• Output (W bi
i ,W

bj

j ,W
by1
y1 ,W

1−by1
y1 , . . . ,W

bym
ym ,

W
1−bym
ym , ci, cj , cy1 , . . . , cym

, Q0,0
t , Q0,1

t , Q1,0
t , Q1,1

t).

The following claim reduces the indistinguishability of
the distribution ensembles Pn(0), Pn(1) to the indistin-
guishability of the one-time symmetric encryption scheme.

Claim A.1 If E is a one-time symmetric encryption then
the distribution ensembles Pn(0) and Pn(1) are computa-
tionally indistinguishable.

Proof sketch: Clearly, the ensembles Pn(0) and
Pn(1) differ only in the off-path labels Q

ai,aj

t for
(ai, aj) �= (ci, cj). In Pn(0) each of these entries is an
all-zeros string that was encrypted under uniformly and in-
dependently chosen key Rai,aj

. In the second distribution
Pn(1), the entry Q

ai,aj

t is an encryption of a “mean-
ingful” message that was encrypted under the key

W
ai−ri,aj

i ⊕ W
aj−rj ,ai

j , since (ai, aj) �= (ci, cj) at least

one of the strings W ai−ri,ai

i ,W
aj−rj ,aj

j is not given in the

output of Pn(1) as part of W bi
i ,W

bj

j . Also, each of the

strings W
ai−ri,aj

i ,W
aj−rj ,ai

j was chosen uniformly and it
appears only in Q

ai,aj

t and not in any of the other gate la-
bels, therefore the key W

ai−ri,aj

i ⊕ W
aj−rj ,ai

j is a
uniformly chosen key that is not correlated with other en-
tries of Pn(1)’s output. So the difference between these two
distributions amounts to the difference between three en-
cryptions of zeros (in Pn(0)) and three encryptions of some
other strings in the same length as the zeros strings (in
Pn(1)), where in both cases the three encryptions are en-
crypted under three uniformly and independently chosen
keys. The indistinguishability of such encryptions eas-
ily follows from the security of the encryption scheme.

We now show how to construct a non-uniform dis-
tinguisher A′

n for Pn(0) and Pn(1) from the distin-
guisher An, and thus derive a contradiction to the pre-
vious claim. The adversary A′

n uses the output of
Pn(σ) to construct the hybrids Hn

t and Hn
t+1, and then

uses An to distinguish between them. Given the out-
put of Pn, we invoke the algorithm Hn

t where the val-

ues of (W bi
i ,W

bj

j ,W
by1
y1 ,W

1−by1
y1 , . . . ,W

bym
ym ,W

1−bym
ym ,

ci, cj , cy1 , . . . , cym
, Q0,0

t , Q0,1
t , Q1,0

t , Q1,1
t) are set to the

values given by Pn. If Pn(0) is invoked we get the distribu-
tion of Hn

t that is the gate t is “fake”; on the other hand, if
Pn(1) is invoked then the gate t is “real” and we get the dis-
tribution of Hn

t+1. Note that Pn does not output the off-path
signals of the wires i and j (which is crucial for Claim A.1
to hold). However, we do not need these off-path sig-
nals to construct the rest of the distribution, since i and
j are output wires of gates that precedes t and there-
fore are “fake” gates in which off-path signals are not en-
crypted. This is the reason for which we had to sort
the gates. On the other hand, the process Pn must out-
put the off-path signals of the output wires of the gate
y1, . . . , ym; since these wires enter as inputs to an-
other gate t′ > t which is a “real” gate in both Hn

t and
Hn

t+1, and therefore uses the off-path signals of its in-
put wires. Overall, we derive a contradiction to Claim A.1,
which completes the privacy proof of Lemma 4.7.

