
Locally Computable Arithmetic Pseudorandom Generators

Lior Zichron∗

August 12, 2017

Abstract

Pseudorandom generators (PRGs) use a short k-bit random seed to generate a longer m-bit
pseudorandom string. Locally-computable PRGs are PRGs which enjoy a high level of efficiency:
Each of their outputs can be computed based on constant number of inputs. In the last decade,
such PRGs were extensively studied. Candidate constructions were suggested, in addition to
several interesting applications.

In this work, we initiate the study of local PRGs over large prime field. That is, we view
the seed as a sequence of k field elements and the output as a sequence of m field elements. We
present two constructions of locally-samplable arithmetic distributions based on Noisy Linear
Sparse Mapping and based on Expander Graphs. Both constructions were studied in the binary
setting by Alekhnovich (FOCS 2003) and Goldreich (ECCC 2000), respectively. For each of
these candidates we present new attacks, and prove lower-bounds against restricted types of
adversaries. Our results suggest that, in several aspects, the arithmetic setting seems to be
easier to analyze and even more secure than the binary setting. In particular, it seems that
security in the arithmetic setting requires modest combinatorial properties than the binary
setting. In a follow-up work [ADI+17] our constructions are shown to yield the first protocol
for securely computing any arithmetic function with constant computational overhead.

1 Introduction

Pseudorandom generators (PRGs) use a short k-bit random seed to generate a longer m-bit pseudo-
random string. Locally-computable PRGs are PRGs which enjoy a high level of efficiency: Each of
their outputs can be computed based on constant number of inputs. In the last decade, such PRGs
were extensively studied. Candidate constructions were suggested, in addition to several interesting
applications in cryptography and computational complexity. (See [App16] for a survey).

In this work, we initiate the study of local PRGs over a large prime field F. That is, we view
the seed as a sequence of k field elements and the output as a sequence of m field elements where
m is typically polynomially larger than k. The size of the field F is typically assumed to be super-
polynomial or even exponential in the security parameter k. Our goal is to generate a long sequence
of m pseudorandom field elements by making only a constant amount of arithmetic operations per
output symbol.

We present two candidate constructions based on Noisy Linear Sparse Mapping and based on
Expander Graphs. Both constructions were studied in the binary setting by Alekhnovich [Ale03]
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and Goldreich [Gol00], respectively. For each of these candidates we present new attacks, and
prove lower-bounds against restricted types of adversaries. Our results suggest that, in several
aspects, the arithmetic setting seems to be easier to analyze and even more secure than the binary
setting. In particular, it seems that security in the arithmetic setting requires modest combinatorial
properties than the binary setting. In a follow-up work [ADI+17], joint with Applebaum, Damg̊ard,
Ishai and Nielsen, our constructions are shown to yield the first protocol for securely computing
any arithmetic function with only constant computational overhead.

1.1 Overview of Our Results

1.1.1 The Security of Sparse Noisy Linear Mapping

We begin by formally defining Noisy Sparse Linear Mapping :

Definition 1.1 (Noisy Sparse Linear Mapping over F). For a field F, an m × k matrix with at
most d non-zero values in each row (hereafter referred to as d-sparse matrix) and noise parameter
µ ∈ [0, 1], we define the randomized function fM,µ : Fk → Fm as follows. Given an input x ∈ Fk
output the m-long vector M · x+ α where α ∈ Fm is a “noise vector” that each of its entries αi is
sampled independently as:

αi =

{
0 with probability 1− µ
uniform field element with probability µ

We sometimes abuse notation and think of fM,µ as the probability distribution that corresponds to

fM,µ(x) where x
R← Fk.1

We relate the pseudorandomness of fM,µ to the linear-algebraic and combinatorial properties
of the corresponding matrix, M . One such key property is the dual distance of the matrix (i.e., the
distance of the linear code .

Definition 1.2 (Dual Distance). Let dd(M) be the maximal integer D for which every subset of
M ’s rows of size at most i < D is linearly independent over F.2

It is not hard to see that a small dual distance can be exploited to distinguish the distribution
fM,µ from the uniform distribution over Fm with good advantage. Indeed, in order to tell whether
y ∈ Fm was sampled from the uniform distribution or from fM,µ, we can restrict y to a small subset
of linearly dependent rows L ⊂ [m] and check whether the restricted vector, yL, belongs to the
image of the sub-matrix ML. A vector from fM,µ passes the test with probability (1−µ)|L|, whereas
a uniform vector passes the test with probability of at most 1/|F| which is tiny for a large field.

It follows that there is always an efficient (in fact linear) distinguisher with distinguishing
advantage of roughly (1− µ)dd(M). We conjecture that one cannot do much better. Namely, that,
for sparse matrix M , the distribution fM,µ ε-fools efficient adversaries with ε = exp(−Ω(cµdd(M)))

1The above distribution is locally samplable. Also, it is non-trivially pseudorandom in the sense that, for constant
µ and m > ω(k), the sampling complexity is smaller than the length of the resulting pseudorandom sequence. Still,
strictly speaking, it does not yield a locally-computable PRG since it is not clear how to sample fM,µ by a procedure
which is both local and economic (in its use of randomness). This point will not bother us, since the construction as
is, turns to be useful for the applications presented in [ADI+17].

2The name “dual distance” comes from the fact that the left null space of M is a linear code of distance dd(M).
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where cµ depends on the noise rate µ.3 Indeed, for limited classes of attacks, we can prove that our
conjecture holds. In Section 3.2 we prove the following theorem (a fuller statement appears there):

Theorem 1.3. For every prime order field F and every d-sparse matrix M ∈ Fm×k with r = dd(M)
and noise parameter µ ∈ (0, 1), the noisy mapping fM,µ satisfies the following properties:

1. Its output is r-wise independent (i.e., it perfectly fools adversaries that can compute an arbi-
trary function that depends on r elements).

2. It ε-fools linear adversaries (that can be compute by degree-1 polynomials) with ε = e−µr.

3. It ε-fools adversaries that can be computed by degree-b polynomials with ε = 16e
−µr
b2b−1 .

4. It ε-fools (n, t)-product tests where n < r and ε = t(1− µ)Ω(r2/m).

Roughly speaking, the last item refers to adversaries that partition the vector y ∈ Fm to t
disjoint blocks of size n each, applies an arbitrary function to each block separately and take the
product (over the complex numbers) of all the results. (See Section 2 for formal definition.)

How to sample matrices with large dual distance? We suggest to sample a d-sparse matrix
M ∈ Fm×k in two steps. First, choose the locations of the non-zero entries of the matrix (e.g.,
by selecting a random set of d entries per row), and then fill them with random field elements.
The outcome of the first step can be viewed as a d-sparse m × k zero-one matrix G. To analyze
the process, we relate the dual distance of the final matrix M to the expansion properties of the
matrix G which can be naturally viewed as a d-uniform hypergraph over the vertex set [k] with m
hyperedges. (Hereafter referred to as (m, k, d)-hypergraph.)

It is well known that if every set S of at most r hyperedges in G expands by a factor α > d/2
(i.e., the hyperedges in S “touch” more than α|S| vertices) then M will have (with probability 1)
a dual distance of at least r. Interestingly, we show that, over large field F, it suffices to require
a much weaker expansion factor of (1 + ε) that is independent of the sparsity parameter d. This
is essentially optimal since a shrinking set of hyperedges (which expands by a factor smaller than
1) induce a linearly-dependent set of rows in M . By analyzing the expansion of a random sparse
hypergraphs (using standard tools) we derive estimation for the dual distance of M (which are
better than the ones available for small fields).

Formally, let us denote by M(G,F) the outcome of the second step of the process applied to
some (m, k, d)-hypergraph G, and let M(m, k, d,F) denote the distribution obtained by selecting
the (m, k, d)-hypergraph G at random and then sampling from M(G,F). In Section 3.3, we prove
the following lemma.

Lemma 1.4. Suppose that G is a (m, k, d)-hypergraph which is (r, 1 + ε)-expanding and |F|ε > m.
Then,

Pr
M←M(G,F)

[dd(M) < r] < |F|−1
r∑
t=1

(
m

|F|ε
)t

Consequently, a random M ← M(m, k, d,F), with |F|ε > m and m = ∆k has dual-distance of
r = k

∆
1

d−2.1
with probability of at least 1−O(

∣∣F−1
∣∣)− o(1).

3We say that a distribution D over the domain Fm, ε-fools a class of adversaries A if for every adversary A ∈ A
the statistical distance between A(D) and A(Um) is at most ε, where Um is the uniform distribution over Fm. (Note
that the output of A may not be binary).
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In Section 7, we calculate concrete security parameters based on the above results. For example,
we show that for a noisy-mapping fM,µ : Fk → Fk2

over prime field of size log(|F|) ≥ 512, with
noise parameter µ = 0.25 and input sizes k = 156 or k = 249, the best known attack run in time
at least 280 or 2100, correspondingly.

1.1.2 Results Regarding the Security of Goldreich’s functions

We begin by formally defining Goldreich’s functions over a finite field F:

Definition 1.5 (Goldreich’s functions). Let s denote some d-tuple with distinct elements in [k] and
for every x ∈ Fk let x|s denote the restriction of x to s. For a d-ary polynomial P : Fd → F, and a
tuple G = (s1, . . . , sm), where each si is a d-tuple of distinct elements in [k], we let fG,P : Fk → Fm
denote the d-local function,

fG,P =
(
P (x|s1), . . . , P (x|sm)

)
We sometimes view G as a hypergraph over k vertices with m ordered hyperedges s1, . . . , sm each of
cardinality d. Correspondingly, we refer to G as the input-output dependency hypergraph of fG,P .
We define a probability distribution Gm,k,d over hypergraphs G = (s1, . . . , sm) by choosing each si
independently and uniformly at random. Finally, for d-ary polynomial P , we let Fm,k,P denote the

probability distribution over functions f : Fk → Fm obtained by selecting G
R← Gm,k,d and letting

f = fG,P .

The sum-product function. We mainly focus on the sum-product polynomial that, for param-
eters a, b (and arity d = a+ b), is defined by

SPa,b(w1, . . . , wa+b) = (w1 + · · ·+ wa) + (wa+1 · · · · · wa+b).

When analyzing the function fG,SPa,b it will be convenient to “split” the dependency (m, k, d)-
hypergraph G into an a-uniform addition hypergraph whose hyperedges contain the first a entries
of the hyperedges of G, and to a b-uniform product hypergraph whose hyperedges contain the last
b entries of the hyperedges of G. We refer to the addition hypergraph as GΣ and to the product
hypergraph as GΠ.

The sum-product function over binary field. Over the binary field, the pseudorandomness
of the sum-product function was extensively studied. In particular, it was shown that for output

lengths of m = k3/2−ε and parameters a = 3, b = 2 a random sum-product function f
R← Fk,m,SPa,p

is likely to fool linear distinguishers [ABR12, OW14]. It was conjectured that this result can be
extended to arbitrary polynomial output length by taking the parameters a and b to be sufficiently
large constants. This conjecture was refuted by [AL16] who showed a linear attack for sum-product
functions with output length of k2.

We extend these results in several ways. First, we close the gap between the lower-bound and the
upper-bound and show that over the binary field (and any other prime-order field) sum-product
fools linear attacks for almost quadratic output lengths. In particular, we prove the following
theorem in Section 4.3.
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Theorem 1.6. For any δ > 0, a > 4,b ≥ 8 output length m = O(k2−δ), and prime field F, with
high probability over the choice of a randomly sampled G← G(m, k, a+b)-hypergraph4, the function

fG,SPa,b : Fk → Fm ε-fools any linear test with ε = exp(Ω(kmin(δ/2,δ− 2
a−2.1

))).

We move on to analyze the security of sum-product over large fields. First, we analyze (in
Section 4.1) the linear attack of [AL16] against the sum-product function over a large field F with

quadratic output length and show that it achieves a distinguishing advantage of |F|−1

|F|2 = Ω(1/ |F|).
Moreover, we show that this is essentially tight even if the output length is larger than the input
by an arbitrary polynomial.

Theorem 1.7. Let G be a (m, k, d)-hypergraph with the property that every pair of hyperedges
intersect in less than b vertices. Let P : Fd → F be any multilinear polynomial of degree at least b.
Then, fG,P : Fk → Fm ε-fools linear tests with ε = k−1

|F| .

It follows that when the field is large (super-polynomial in the security parameter) one can
achieve negligible bias ε even for an arbitrary polynomial output length m = ks by using the
sum-product polynomial with sufficiently large parameters a and b. In particular, for b > s/2, a

randomly chosen f
R← Fks,k,SPa,b is likely to k−1

|F| -fools linear tests.

Security against low-degree polynomials. We can partially extend our results to the case
of low degree polynomials. Specifically, we show that no such polynomial can distinguish the
image of fG,SPa,b from the uniform distribution with 1-sided error. Put differently, there is no low
degree non-trivial polynomial Q : Fm → F that annihilates the sum-product function. (Recall that
Q : Fm → F annihilates the function f : Fk → Fm if Q ◦ f : Fk → F is the zero polynomial.) The
following theorem is proved in Section 5.2.

Theorem 1.8. Consider the function fG,SPa,b : Fk → Fm and assume that GΠ is (2r+ 1, b/2 + 1)-
expanding. Then, fG,SPa,b cannot be annihilated by any non-trivial polynomial of degree smaller
than r.

We note that if there exists a degree ` annihilating polynomial then it can be found by making
only O(m3`) arithmetic operations (see Section 5.1). It should be emphasized that the complexity
(number of arithmetic operations) of such attack is independent of the field size.5 Assuming that
one cannot do better, and plugging in the expansion parameters of a randomly chosen graph

(Claim 2.10), we get Ω

(
k

∆
1

b−2.1

)
bits of security against that attack - for fG,SPa,b : Fk → F∆k.

We do not know how to prove that the function fools general (low degree) polynomials. (This is
open even for degree-2 polynomials over the binary field.) We bound, however, the distinguishing
advantage achievable by polynomial tests T : Fm → F, of degree at most q, where each of their
inputs appears in at most t monomials. We show that, for slightly super-linear output lengths,
the sum-product function fools such (q, t) sparse polynomials. (Our analysis here is limited for
fixed-size fields.)

4Throughout the paper, an event happens with high probability if it happens with probability which converges to
1 when k goes to infinity.

5Without the latter restriction, one can easily get an attack of complexity |F|r. Given y ∈ Fm check if the
restriction of y to the set S of shrinking hyperedges has a preimage x. Since S is shrinking, a random y passes the
test with probability at most 1/|F|. Moreover, the test can be implemented by trying all assignments for the inputs
of x that participates in the hyperedges of S, which takes at most Fr operations.
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Theorem 1.9. For every a, b ≥ 4 and 0 < ρ < 0.5a−2
a−1 , m = k1+ρ and every constants q and t,

with high probability over G ← G(m, k, a + b), the function fG,SPa,b : Fk → Fm ε-fools any (q, t)

sparse polynomial T : Fm → F with ε = exp(−Ω(k1−2ρa−1
a−2 )) where the constant in the Ω depends

on a, b, q, t and the field size F.

See Section 6 for proof and details.

Concrete parameters. Finally, taking into account the known attacks, we suggest (in Section 7)
some parameters for instantiation. For example, we show that over prime field of size log(|F|) ≥ 128,
the (3, 4)-product-sum polynomial SP3,4 with input length of k ≥ 250 and output length of m = k2,

a random function f
R← Fk,m,SPa,b is likely to k2−128-fools linear test.

2 Preliminaries

2.1 List of Relevant Attacks

In the following, F is taken to be some finite field.

Definition 2.1 (Statistical Distance). Let A and B be two distributions over F (the term could be
similarly applied to any alphabet) then:

SD(A,B) =
1

2

∑
i∈F

∣∣∣∣ Pr
x←A

[x = i]− Pr
x←B

[x = i]

∣∣∣∣
We proceed by defining the notion of ε-fooling (possibly non-Boolean) distinguishers.

Definition 2.2 (ε-Fooling). A distribution W over Fm is ε-fooling a function family H if for
any h ∈ H we have that SD(h(W ), h(Um)) < ε where Um is the uniform distribution over Fm.
Similarly, a function f : Fk → Fm is ε-fooling a function family H if the distribution f(Uk) ε-fools
it. Finally, we say that an ensemble F = {Fn}n∈N ε-fools function family H with high probability
if

Pr
f←Fn

[f ε-fools H] ≥ 1− o(1).

Definition 2.3 (Degree q Polynomial Test ). A degree q polynomial test is a function family of
all polynomial functions T : Fm → F such that any of T ’s monomials is of degree at most q. An
important special case is the linear test. Specifically, for any linear test T : Fm → F there exists
some α ∈ Fm such that for all y ∈ Fm we have that T

(
y
)
≡ 〈α, y〉 where 〈·, ·〉 stands for inner

product.

Definition 2.4 ((n, t)-Product Test). A t-function product test is a function family of all functions
h : Fm → C1 (C1 is the complex unit disc) that can be written as the product of t disjoint input
functions. Meaning that there exists g1, . . . , gt : Fn → C1 functions and a division of [m] into t
disjoint sets {Hi}ti=1 each of size |Hi| = n such that h(x) =

∏t
i=1 gi(x|Hi).

The notion of Annihilating Polynomial can be viewed as a distinguisher with one-sided error.

Definition 2.5 (Annihilating Polynomial). Let f : Fn → Fm be some degree d polynomial. We say
that a non-trivial polynomial Q : Fm → F is f -annihilating if ∀x ∈ Fn we have that Q

(
f(x)

)
= 0.
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We note that a low-degree annihilating polynomial yields a good distinguisher.

Remark 2.6 (Annihilating Polynomial is a ’Good Attacker’). Let f : Fn → Fm be any function
and let Q : Fm → F be an f -annihilating polynomial. By Schwartz-Zippel Lemma we have that Q
distinguish y /∈ Im(f) from any output of f with probability at least 1− deg(Q)

|F| .

2.2 Graphs and Matrices Properties

In this paper we show that many resilience properties of the PRG’s results from the structure of
their dependencies graph. Specifically we would show that they relate to the graph expansion.
Informally, the expansion refers to the ratio between a subgroup of the output and the input
variables that affect it. More formally:

Definition 2.7 (Boundary Set). For any matrix Mm×k and subset of the columns S ⊂ [k] we
define the Boundary Set of S:

B(S)
.
= {i ∈ [m]such that ∃j ∈ Swith Mi,j 6= 0}

meaning the subset of the rows matching non-zero entries of S’s columns. The term is similarly
defined for any subset of the rows.

Equipped with this notation we can proceed to defining the set expansion:

Definition 2.8 (Expanding / Shrinking Sets). For any matrix Mm×k and subset of its rows S ⊂ [m]

we note α = |B(S)|
|S| . If α > 1 we say that S is an expanding set with expansion parameter α otherwise

we say that it is a shrinking set with parameter α. Correspondingly, for a hypergraph Gm,k,d we
say that a subset S of its hyperedges is expanding or shrinking if the same subset of the rows in its
adjacency matrix is expanding or shrinking, respectively.

Definition 2.9 (Minimal non α-Expanding Set). For any α > 0 and matrix M we let ρα(M)

denote the size of the minimal S ⊂ [m] such that S is not α-expanding, i.e., |B(S)|
|S| < α. We use

similar notation, ρα(G),for the minimal non α-expanding subset of G’s hyperedges

We introduce the following useful relations for analyzing graph expansion:

Claim 2.10. A random G← Gm,k,d-hypergraph, with m = ∆k, a ≥ 3, d > a/2 and r = k

∆
2

a−2.1
is,

with high probability, (r, d− a
2 )-expanding. That is,

ρd−a
2
(G) = Ω

(
k

∆
2

a−2.1

)
Which in turn immediately yields the following corollary:

Corollary 2.11. A random G ← Gm,k,d-hypergraph, with m = ∆k, d > 2, with high probability,

contains no shrinking set of size O

(
k

∆
1

d−2.1

)
. (i.e., ρ1(G) = Ω

(
k

∆
1

d−2.1

)
)

And it is supplemented by the following claim:
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Claim 2.12. For every α ∈ (0, 1), any (m, k, d)-hypergraph, with m = kc, has an α-shrinking set
of hyperedges of size

t = Θ
(
α
−1
d−1k

d−c
d−1

)
In particular,

ρα(G) = Θ
(
α
−1
d−1k

d−c
d−1

)
Proof of Claim 2.10. For a graph G← G∆k,k,d let N` denote the size of the set:

{I ⊂ [m]; |I| = `, |∪i∈Isi| ≤ (d− a

2
)`}

That is, N` counts the number of `-size subsets of the hyperedges which fail to be (d− a
2 )-expanding.

Then, we have that:

Pr[G has non (d− a

2
)-exspanding `-size subset] ≤ E[N`] (1)

=

(
∆k

`

)(
k

`(d− a
2 )

)(
`(d− a

2 )

d

)`(k
d

)−`
(2)

≤
(e∆k
`

)`( ek

`(d− a
2 )

)`(d−a
2

)(e`(d− a
2 )

d

)d`(ek
d

)−d`
(3)

=
[
cd,a∆(

`

k
)
a−2

2
]`

(4)

=
[
`
∆

2
a−2

αd,ak

]a−2
2
`

(5)

Where the transition from probability to expectation shown in (1) follows from union bound, and
the next transition follows from standard bound of binomial coefficient. And for r = k

∆
2

a−2.1
we
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have that:

Pr[G is not (r, d− a

2
)-exspanding ] ≤ E[

r∑
`=1

N`] (6)

≤
r∑
`=1

E[N`] (7)

≤
r∑
`=1

[
`
∆

2
a−2

αd,ak

]a−2
2
`

(8)

≤
r∑
`=1

[
r

∆
2
a−2

αd,ak

]a−2
2
`

(9)

≤
r∑
`=1

[
∆

2
a−2
− 2
a−2.1

αd,a

]a−2
2
`

(10)

≤
∞∑
`=1

[
∆

−0.2
(a−2)(a−2.1)

αd,a

]a−2
2
`

(11)

= o(1) (12)

Proof of Claim 2.12. Let G be some (m, k, d)-hypergraph and T ⊂ [k] some size t subset of the
input. We say that an hyperedge e is contained in T if all of its vertices belong to it. If we sample
a uniformly chosen T the probability that an hyperedge e will be contained in T is(

k − d
t− d

)(
k

t

)−1

=
t · (t− 1) · · · (t− d)

k · (k − 1) · · · (k − d)
=

(
t

k

)d
γk,t,d

where for constant d and k, t → ∞ we have that γk,t,d → 1. We let N be random variable
representing the number of hyperedges contained in T and by linearity of expectation we have
that:

E[N ] = m · Pr[e is contained in T ] = kc ·
(
t

k

)d
γk,t,d

and for t = (γk,t,d)
−1
d α

−1
d−1k

d−c
d−1 we get that:

E[N ] = t

(
t

k

)d−1

kc−1 = α−1t

meaning that ρα(G) = Θ
(
α
−1
d−1k

d−c
d−1

)
Finally we mention the following properties of random graphs:

Claim 2.13. A randomly chosen (∆k, k, d)-hypergraph, with ∆ = kε for some constant ε > 0,
satisfies the following properties with probability 1− o(1):
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1. Each vertex is member of at most 2∆d hyperedges. Meaning that, ∀v ∈ V we have that
|{e ∈ E; v ∈ e}| ≤ 2∆d

2. An upper bound on the number of hyperedge that intersect each single hyperedge: ∀e ∈ E we
have that |{e′ ∈ E; e′ ∩ e 6= ∅}| ≤ 2∆d2

3. If ε < 1 then, ∀e′, e ∈ E we have that e′ ∩ e ≤ 3

Proof. We let G ← G∆k,k,d be some randomly sampled hypergraph for ∆ = kε and prove each of
these statements separately:

1. The first item follows directly from upper bounding the probability of that event using Cher-
noff’s Bound. We first note that E |{e ∈ E; v ∈ e}| = ∆d and proceed by:

Pr[∃v s.t. |{e ∈ E; v ∈ e}| ≥ 2∆d] ≤ kPr[|{e ∈ E; v ∈ e}| ≥ 2∆d] (13)

= kPr[|{e ∈ E; v ∈ e}| ≥ 2E |{e ∈ E; v ∈ e}|] (14)

≤ k exp[−1

3
E |{e ∈ E; v ∈ e}|] (15)

≤ k exp[−d
3
kε] (16)

Where the transition to 15 results from Chernoff’s Bound and the term obviously goes to
zero.

2. The second item is an immediate corollary: each hyperedge consists of exactly d vertices and
each vertex is contained in at most 2∆d hyperedges. Hence, a hyperedge share a vertex with
at most d2∆d = 2∆d2 different hyperedges.

3. The last item can be obtained using the union bound on the probability that two different
hyperedges share 4 vertices or more. Assume ε < 1 then:

Pr[∃e′, e ∈ E; e′ ∩ e ≥ 4] ≤ m2 Pr[e1 ∩ e2 ≥ 4] (17)

≤ m2

(
k

2d− 4

)(
2d− 4

4

)(
k

d

)−2

(18)

≤ O
(
m2k−4

)
(19)

≤ O
(
k2ε−2

)
= o(1) (20)

Where the transition in 17 results from taking union bound.

2.3 Characteristic Distance and the Gowers’ Norm

We begin by defining the Characteristic Distance of a random variable:

Definition 2.14 (Characteristic Distance). For a random variables A,B : Ω→ Fp we shall define
the ’Characteristic Distance’ of A from B by:

CD(A,B)
.
= |E[ωA]− E[ωB]|

where ω is the p’th root of 1.
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We use the Characteristic Distance and Statistical Distance interchangeably due to the following
claim:

Claim 2.15. For every pair of random variables X and X ′, taking values in F we have

CD(X,X ′) ≤ 2SD(X,X ′) ≤
√
|F| − 1 ·CD(X,X ′)

See [BV10] for proof. Moreover, in this section we introduce the functional Gowers Uniformity.
The usefulness of the Gowers Uniformity stems from its ability to eliminate lower order terms and
its relation to the Characteristic Distance (in particular the zero degree Gowers Uniformity of a
function equals to its Characteristic Distance from the uniform distribution).

Definition 2.16 (Gowers Uniformity). For every function f : Fk → F and every positive integer
q, the degree-q Gowers Uniformity Uq(f) is defined as:

Uq(f)
.
= E

x,y1,...,yq←Fn
[ω∆y1,...,yqf(x)]

where ∆y1,...,yq is a degree-q directional derivative and ω
.
= exp(2πi/|F|).

We cite the following proposition from [?] which discuss properties of the Gowers Uniformity:

Proposition 2.17 (Proposition 2.7 of [?]). The Gowers Uniformity has the following properties:

1. |Uq(f)| ≤ Uq+1(f)1/2

2. Uq+1(f − p) = Uq+1(f) for any degree-q polynomial p : Fk → F

3. Let
{
fi : Fk → F

}t
i=1

be a set of functions and let Si ⊂ [k] denote that variables that fi depends
on, then, if {Si}ti=1 are disjoint then:

Uq

(
t∑
i=1

fi

)
=

t∏
i=1

Uq(fi)

The first two items appear in [?], since the last item is a slight generalization we shell prove it:

Proof of item 3. Let, for any i ∈ [t], fi : Fk → F be a function with the property that
{f1(Uk), . . . , ft(Uk)} is a set of independently distributed random variables, then:

Uq

(
t∑
i=1

fi

)
= E

x,y1,...,yq←Fn

[
ω∆y1,...,yq

∑t
i=1 fi(x)

]
(21)

= E
x,y1,...,yq←Fn

[
ω
∑t
i=1 ∆y1,...,yqfi(x)

]
(22)

= E
x,y1,...,yq←Fn

[
t∏
i=1

ω∆y1,...,yqfi(x)

]
(23)

=

t∏
i=1

E
x,y1,...,yq←Fn

[
ω∆y1,...,yqfi(x)

]
(24)

=

t∏
i=1

Uq(fi) (25)
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Where 22 results from the linearity of derivation and the transition to 24 results from the fact that,
since each fi depends on different input variables,

{
∆y1,...,yqfi(x)

}
are independently distributed

and the expectation of a product equals the product of the expectations.

Finally, we introduce the following lemma which we used in the proof of theorem 4.10 and 6.1:

Lemma 2.18. Let f1, . . . , ft : Fd → F be some degree-b functions and S1, . . . , St ⊂ [k] distinct
subsets of size |Si| = d. Let R : Fk → F be some function of total degree of at most c < b in
S =

⋃
i Si variables (i.e., for each of R’s monomials the sum of the degrees of variables {xi}i∈S is

at most c). Then:

CD

(
t∑
i=1

fi(x|Si) +R(x), U

)
≤

(
t∏
i=1

Uc+1(fi)

) 1
2c+1

Proof. Let f1, . . . , ft : Fd → F be some degree-b functions and S1, . . . , St ⊂ [k] disjoint subsets of
size |Si| = d. Let R : Fk → F be some function of total degree of at most c < b in S =

⋃
i Si

variables and denote

f(x) =

t∑
i=1

fi(x|Si) +R(x)

By triangle inequality:

CD(f(x), U) =

∣∣∣∣ E
x←Fn

[ωf(x)]

∣∣∣∣ ≤ E
xi,i/∈S

∣∣∣∣ E
xi,i∈S

[ωf(x)]

∣∣∣∣
Therefore it suffices to upper bound the inner expectation for any fixing of the variables {xi : i 6∈ S}.
Let x∗ denote a random vector in Fn whose S entries are uniformly chosen from FS and its S̄-entries
are fixed to some arbitrary value in FS̄ . Then:∣∣∣E

x∗

[
ωf(x∗)

]∣∣∣ =
∣∣∣E
x∗

[
ω
∑t
i=1 fi(x|Si )+R(x∗)

]∣∣∣ (26)

= U1

(
t∑
i=1

fi(x|Si) +R(x∗)

)
(27)

≤ Uc+1

(
t∑
i=1

fi(x|Si) +R(x∗)

) 1
2c+1

(28)

= Uc+1

(
t∑
i=1

fi(x|Si)

) 1
2c+1

(29)

=

(
t∏
i=1

Uc+1(fi)

) 1
2c+1

(30)

Where the transition to (27) results from the definition of the degree-1 Gowers Uniformity. The
transition to (28) results from the first item of Proposition 2.17 and the transition to (29) results
from the second item of 2.17. Finally, we use the third item of 2.17, combined with the fact that
Si are disjoint sets, to obtain (30).
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3 Noisy Sparse Linear Mapping

3.1 Linear Dependency Attack

High level approach In this section we introduce a successful attack against Noisy Sparse Linear
Mapping. The general approach of the attack is that for any linearly dependent subset of the row
R ⊂ [m] and “pseudorandom” y ← fM,µ (Uk) if y|R is non-noisy then the equation y|R = M |Rx
has a solution. We later show that, with high probability, it is not the case for a random y ← Fm.
Hence the method attempts to go through exponentially “many” linearly dependent subsets hoping
to find a non-noisy one. There are several ways to choose the linearly-dependent sets R.6

In particular, our approach is to find a subset S ⊂ [m] which is (1− µ(1 + ε))-shrinking, to go
through all of its |S| (1 − µ(1 + ε))-size subsets R. Since the expected number of noisy rows in S
is |S|µ, we would have (with high probability) a non-noisy |S| (1− µ(1 + ε))-size subsets R. This
set is shrinking (due to the large shrinkage of S), and therefore the corresponding rows are linearly
dependent.

We proceed with a formal description of our attack (Algorithm 1).

input : M , y ∈ Fm, noise parameter µ, success parameter ε > 0 and a
(1− µ(1− ε))-shrinking subset S

1 for R subset of S of size |R| = |S|
(
1− µ(1 + ε)

)
do

2 try solving [M |R; y|R] using gaussian elimenation;
3 if Succeed then

output: 1
4 end

5 end
output: 0

Algorithm 1: Attacking the Noisy Mapping

3.1.1 Analysis

In the following, for any µ ∈ [0, 1] we let H(µ) = −µ log(µ)− (1− µ) log(1− µ) denote the binary
entropy function. We further mention the relation

(
M
µM

)
≈ 2MH(µ) and in particular log

(
M
µM

)
≤

MH(µ).

Claim 3.1. Algorithm 1 runs in time O
(
|S|3 · 2|S|H(µ(1+ε))

)
Proof. The algorithm goes through all

(
1−µ(1 + ε)

)
|S| size subsets of the output, meaning that it

goes through the Gaussian Elimination Process
( |S|(

1−µ(1+ε)
)
|S|

)
times which, approximately, equals

2|S|H(µ(1+ε)) and since the Gaussian Elimination Process runs in time O(|B(S)|3) ≤ O(|S|3) (since
S is shrinking) the desired result follows immediately.

6Since a set R of linearly-dependent outputs is clean of noise with probability (1−µ)|R| < (1−µ)dd(M), the expected

number of sets that need to be examined (in order to get constant distinguishing advantage) is Ω( 1
1−µ

dd(M)
). Hence,

the expected complexity of this family of attacks is (at best) exponential in Ω
(

dd(M) log 1
1−µ

)
.
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k logk(m) d log |F| Noise µ ε used log-complexity

200 2 7 128 0.25 0.5 99

400 2 7 128 0.25 0.5 171

800 2 7 128 0.25 0.5 295

1600 2 7 128 0.25 0.5 512

Table 1: This table shows the expected calculated complexity, meaning a bound on the best known
attack against Noisy Mapping. In particular, for input size k, output length described by logk(m),
matrix degree parameter-d and field size |F|, and noise parameter µ the table presents a lower
bound on the log-complexity.

Claim 3.2. If y was sampled according to fM,µ(Uk), then Algorithm 1 output 1 with probability at

least exp
(
−ε2·µ|S|

3

)
.

Proof. We first note that for any subset R that the algorithm goes through, if the rows of R are
linearly dependent and no noise was added to them then the algorithm outputs 1. We proceed
by mentioning that any such subset of the rows is linearly dependent since |B(R)| ≤ |B(S)| and
|R| = |S|

(
1−µ(1+ε)

)
= |B(S)| (1+δ) hence it is a shrinking set with parameter 1+δ . Finally, we

note that the probability that the total number of noisy output variables exceeds µ(1 + ε) can be

upper bounded, using Chernoff’s Bound, by exp
(
−ε2·µ|S|

3

)
and our claim follows immediately.

Claim 3.3. For y
R← Fm, Algorithm 1 outputs 1 with probability at most 2− log|F|+H(µ(1+ε))|S|.

Proof. For any R ⊂ S we have that R is a shrinking set therefore Im {M |R} has a rank of at

most |R| − 1. Hence, |Im {M |R}| ≤ |F||R−1| meaning that the probability that y ← F|R| will be in
Im {M |R} is 1

|F| . By union bound the probability that that event would occur for any R ⊂ B(S)
is at most:

1

|F|
·
(

|S|
(1− µ(1 + ε)) |S|

)
≈ 1

|F|
· 2|S|H(µ(1+ε)) = 2− log|F|+H(µ(1+ε))|S|

Corollary 3.4. For any Noisy Sparse Linear Mapping and 0 < ε < 1
µ − 1 we denote ρ =

ρ(1−µ(1+ε))(M) and there exists an attack that runs for time exponential in O (ρH(µ(1 + ε))) and
distinguishing advantage of

1− 2− log|F|+ρH(µ(1+ε)) − exp(
−ε2µρ

3
)

Based on corollary 3.4 and using techniques introduced in Section 7 we can now proceed to
assessing the affectiveness of our attack. We first note that for a matrix sampled by the distribution
M ←M(m, k, d,F) (see definition 3.8) we can get actual parameters. For instance, in Table 1 we
examine parameters settings that guarantee distinguishing advantage of at least 0.8 and calculate
the expected shrinking set sizes to calculate the attacks complexity.
More generally, Claim 2.12 yields the following corollary:
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Corollary 3.5. Any (m, k, d)-matrix, for m = kc, contains (1− µ(1 + ε))-shrinking set of size

Θ
(

(1− µ(1 + ε))
−1
d−1 · k

d−c
d−1

)
Meaning that the complexity of the attack is exponential in:

O
(

(1− µ(1 + ε))
−1
d−1 · k

d−c
d−1 ·H(µ(1 + ε))

)
Remark 3.6. We note that the attack can be easily extended to working over any finite-field (not
only “large field”) by demanding a slightly smaller shrinking parameter - we focus on large field for
simplicity of notation.

3.2 Large Dual-Distance Implies ε-Fooling

In this section we prove the following main theorem:

Theorem 3.7. For every M ∈ Mm,k,d with r = dd(M) and noise parameter µ ∈ [0, 1], the noisy
mapping fM,µ satisfies the following properties:

1. Its output is r-wise independent.

2. It ε-fools linear distinguishers with ε = e−µr.

3. It fools degree b distinguishers with ε = 16e
−µr
b2b−1 .

4. It ε-fools (n, t)-product tests where n < r and ε = t(1− µ)Ω(r2/m).

The last item makes sense only for sub-quadratic output length m < k2−δ (since r is sub-linear
in k).

Proof. We will prove each of the statements separately:

1. dd(M) = r meaning that any subset of the rows s ⊂ [m] of size |s| = t ≤ r is linearly
independent. Hence, the t×m submatrix Ms, induced by s, has image dimension of exactly t
and kernel dimension of k − t. Therefore, for any y ∈ Ft, Prx[y = Msx] = |ker{Ms}| /

∣∣Fk∣∣ =∣∣F−t∣∣. Thus, the random variable MUk is r-wise independent. Since the noise is chosen

independently from x
R← Uk, the random variable fM,µ(x) is also r-wise independent.

2. For any β ∈ Fm we let s = {i ∈ [m];βi 6= 0}. Based on the first item, if |s| ≤ r then
SD(〈β, fM,µ〉, U) = 0. Hence we can assume |s| > r. However,

SD(〈β, fM,µ〉, U) ≤ Pr[∀i ∈ s, αi = 0] ≤ (1− µ)|s| ≤ e−µ·r

3. [Vio09] showed that the sum of b, identically independently distributed, distributions that
ε-fools linear test, fools degree d polynomial test. Therefore, it suffices to show that the
distribution {fM,µ (Uk)} can be represented as the sum of d such distributions. We do so,
by showing that it is actually the sum of b Noisy Mappings defined by the same matrix,
M , and smaller noise parameter, µ′. We first note that for any µ′ the sum of b iid copies
of the noisy vector, αµ

′
, µ′ ∈ [01], distributed as in Definition 1.1, is a noisy vector αµ for
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µ = 1 − (1 − µ′)b ≤ bµ. Hence there exists some µ′ ≥ µ/b such that
∑b

j=1 α
µ′,j = αµ where

each αµ
′,j is an iid copy of αµ

′
. Therefore,

{fM,µ(Uk)} ≡ {
b∑

j=1

M · U (j)
k +

b∑
j=1

αµ
′,j} ≡ {

b∑
j=1

fM,µ′(U
(j)
k )}

The main theorem of [Vio09] states that the sum of b iid Generators that ε-fools linear test

εb-fools degree b test with εb
.
= 16 · ε1/2b−1

. Hence, the Noisy Linear Mapping ε-fools degree
b-test with ε = 16eµ

′r/2b−1 ≤ 16eµr/(b·2
b−1).

4. Based on Theorem 5 in [HLV16]: Theorem 5 in [HLV16] states that the sum of two
distributions D + E where D is r-wise independence and

Ei =

{
0 with probability 1− µ
uniform field element with probability µ

.

ε-fools (n, t)-product test where n < r with ε = t(1− µ)Ω(r2/m).
Let g1, . . . , gt : Fn → C1, for some n, t where C1 is the complex unit disk. We note that
fM,µ(Uk), can be written as the sum of two distributions D,E ∈ Fm where D ≡ M · Uk is
r-wise independent (based on the first item) and for any i ∈ [m] :

Ei =

{
0 with probability 1− µ
uniform field element with probability µ

.

by definition. For j ∈ [t] we let Hj ⊂ [m] of size |Hj | = n represent a division of [m] into t
disjoint n-size sets. Therefore, based on the Theorem 5 of [HLV16], we have that if r ≥ n then
the t product test defined by {gj , Hj}tj=1 is ε-fooled by the generator with ε = t(1−µ)Ω(r2/m).
Hence, the test is ε-fooled by fM,µ.

3.3 Over Large Field: Random Matrix has Large Dual-Distance

This subsection serves as another demonstration to the power of Noisy Mappings over Large Fields.
In particular, we show that, over large field, a randomly sampled matrix M ←M(m, k, d,F) will
have, with high probability, high Dual Distance. And hence, by the previous subsection, matrices
sampled by this distribution would be resistance against various attacks. We again emphasize the
fact that the above appears only for large fields (in a sense that we will now define).

Definition 3.8. For a field F and (m, k, d)-hypergraph G we define a probability distribution
M(G,F) over m × k matrices as follows: Take Mi,j to be a fresh random non-zero field element
if j appears in the i-th hyperedge of G; otherwise, set Mi,j to zero. The uniform distribution over
d-sparse m× k matrices over F, denoted by M(m, k, d,F), corresponds to the experiment where G
is sampled uniformly from Gm,k,d and then M is sampled according to M(G,F).
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Lemma 3.9. Suppose that G is a (m, k, d)-hypergraph which is (r, 1 + ε)-expanding and |F|ε > m.
Then,

Pr
M←M(G,F)

[dd(M) < r] < |F|−1
r∑
t=1

(
m

|F|ε
)t

Consequently, a random M ← M(m, k, d,F), with |F|ε > m and m = ∆k has dual-distance of
r = k

∆
1

d−2.1
with probability of at least 1−O(

∣∣F−1
∣∣)−o(1). (see section 7) for concrete parameters.

We use the following claim:

Claim 3.10. There exists v ∈ Fm with r non-zero values and v′M = 0 ⇐⇒ There exists v ∈ Fm
with r non-zero values, v′M = 0 and

∑
i ui = 1

Proof. The first direction is trivial. Let v ∈ Fm be some vector with r non-zero values and assume
that v′M = 0 we denote u = (

∑
i vi)

−1 v. We have that u′M = 0, u has at most r non-zero values
and

∑
i ui = 1.

Proof of Lemma 3.9. Let G ∈ Gm,k,d be some (r, 1 + ε)-expander. We upper bound the probability
that, over a random sampling M ← M(G,F) , there exists a non zero v ∈ Fm s.t. v′M = 0 and
|v| ≤ r. For any subset s ⊂ [m] we denote Vs = {v; vi 6= 0⇔ i ∈ s

∑
i vi = 1}. Therefore,

Pr[∃v′s.t v′M = 0 & |v| ≤ r] = Pr[∃v′s.t v′M = 0 & |s| ≤ r & v ∈ Vs] (31)

≤
r∑
t=1

∑
Vs;|s|=t

∑
v∈Vs

Pr
M

[v′M = 0] (32)

≤
r∑
t=1

(
m

t

)
|Vs|Pr

M
[v′M = 0] (33)

≤
r∑
t=1

(
m

t

)
|F|t−1 |F|−t(1+ε) (34)

≤ |F|−1
r∑
t=1

( m
|F|ε

)t
(35)

Where the first transition follows from Claim 3.10, the transition in 33 follows from simply counting
the number of options for choosing size t distinct output elements, and the transition in 34 results
from calculating the size of Vs and the probability that the product v′M would be zero and in case
|F|ε < m we obtain O(|F|−1). We further note that by Claim 2.10 a random M ← M(m, k, d,F)
with m = ∆k is, with probability 1−o(1), ( k

∆
1

d−2.1
, 1)-expanding. Therefore, in case |F|ε > m, such

M ← M(m, k, d,F) has dual-distance of r = k

∆
1

d−2.1
with probability of at least 1 − O(

∣∣F−1
∣∣) −

o(1).

Corollary 3.11. Let M ← M(m, k, d,F) then with probability at least 1 − δ, the noisy mapping

fM,µ is r-wise independent and ε-fools degree-d distinguishers with r =
(

k

∆
1

d−2.1

)
, ε = 16e

−µr
b2b−1 ,and

δ = O(
∣∣F−1

∣∣) + o(1).
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4 The Bias of Goldreich’s functions

4.1 Linear Attack for Quadratic Stretch

We consider the following linear attack against Goldreich’s functions with m = Ω(k2) (which gen-
eralizes the attack of [AL16]):

input : a sum-product Goldreich Function G = GΣ
⋃
GΠ where GΣ and GΠ are

(m, k, a) and a (m, k, b) hypergraphs, respectively. A vector y ∈ Fm
output: 1 iff y ∈ Im

{
fG,SPa,b

}
1 Let M be the (m, k, b)-matrix where Mi,j = 1 if the i-th hyperedge of GΣ contains the

j-th vertex;
2 Find i ∈ [k] which participates in at least k + 1 hyperedges in GΠ;
3 Let Li ⊂ [m] denote the hyperedges of GΠ that contain the i-th vertex;

4 Solve v ·M |Li = 0 for v ∈ F|Li|;
5 if 〈y|Li , v〉 = 0 then

output: 1
6 else

output: 0
7 end

Algorithm 2: Linear Attack for Goldreich’s functions

Claim 4.1. The running time of Algorithm 2 is O
(
k3
)

(arithmetic operations)

Proof. Results immediately from the size of the matrix M , m×k, and the complexity of preforming
Gaussian Elimination.

Claim 4.2. For y ← Fm Algorithm 2 output 1 with probability 1
|F| .

Proof. The inner product of a non-zero vector v ∈ Fm and a randomly distributed y ← Fm is
randomly distributed over Fm

Claim 4.3. If m = Ω
(
k2
)

and y ∈ Im
{
fG,SPa,b

}
then Algorithm 2 output 1 with probability at

least 2|F|−1

|F|2

Proof. m = Ω
(
k2
)

and hence, there exists a vertex of GΠ which is contained in at least k + 1
different hyperedges and so the Li columns of M are linearly dependent. Therefore, the algorithm
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would find v ∈ F|Li| such that v ·M |Li = 0 meaning that:

Pr [〈yLi , v〉 = 0] = Pr

∑
l∈Li

vl

∑
j∈Sl

xj +
∏
j∈Tl

xj

 = 0

 (36)

= Pr

∑
l∈Li

vl
∑
j∈Sl

xl

+

∑
l∈Li

vl
∏
j∈Tl

xj

 = 0

 (37)

= Pr

∑
l∈Li

vl
∏
j∈Tl

xj = 0

 (38)

= Pr

xi∑
l∈Li

vl
∏

j∈Tl\xi

xj = 0

 (39)

= Pr[xi = 0] + Pr[xi 6= 0] Pr

xi∑
l∈Li

vl
∏

j∈Tl\xi

xj = 0
∣∣∣xi 6= 0

 (40)

≥ 1

|F|
+ (1− 1

|F|
)

1

|F|
=

2 |F| − 1

|F|2
(41)

The transition to 38 follows from the fact that v ·M |Li = 0, and the transition to 39 follows from the
fact that vl 6= 0 only for l ∈ Li meaning that each Tl contains the vertex i. The last inequality follows
by noting that, for xi = α 6= 0, the polynomial α

∑m
l=1 vl

∏
j∈Tl\xi xj is a multilinear polynomial,

and therefore it takes the value zero with probability at least 1/|F|. (This will be proved later in
Claim 4.8.)

Corollary 4.4. For any fG,SPa,b : Fk → Fm, such that m = Ω(k2) there exist a linear attack with

distinguishing advantage of 2|F|−1

|F|2

4.2 Small Bias Over Large Field

We prove the following theorem:

Theorem 4.5. Let G be a (n,m, d) hypergraph with the property that every pair of hyperedges
intersect in less than b vertices. Let P : Fd → F be any multilinear polynomial of degree at least b.
Then, fG,P : Fk → Fm ε-fools linear tests with ε = k−1

|F| .

Remark 4.6. Taking P to be the (a, b)-sum product polynomial, and choosing G to be a random
(m, k, d)-graph with m = kb/2, we derive a low-bias generator (with ε = k−1

|F| ) with high probability.

This can be improved to m = O(kb/2+1/2) by sampling G at random and then removing “bad
hyperedges” which intersect with other hyperedges in more than b vertices. It is not hard to see that
the number of removed hyperedges is likely to be small o(n).

Fix some non-trivial linear test α ∈ Fm, and observe that the polynomial g(x) = 〈α, fG,P (x)〉
is a non-trivial multi linear polynomial of degree b. (Since each pairs of outputs of f share at most
b − 1 variables, degree-b monomials do not cancel out.) Theorem 4.5 therefore follows from the
following lemma.
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Lemma 4.7. Let Q : Fn → F be multi-linear polynomial then SD(Q(Un), U) ≤ n−1
|F| .

Before proving the lemma, we need the following claim.

Claim 4.8. Let Q : Fn → F be some non-trivial multi-linear polynomial over a field F of cardinality
p. Then ∀z ∈ F we have that

Pr[Q(Un) = z] ≥ 1

p

(
p− 1

p

)n−1

.

The claim is tight for the degree n multilinear monomial
∏
i∈[n] xi.

Proof. The proof is by induction on the number of variables n. The basis is trivial since the
only relevant polynomial is x1 + c for a constant c ∈ F. We prove the induction step. Assume,
without loss of generality, that Q depends on xn. Therefore, Q can be written as Q(x1, . . . , xn) =
xnQ1(x1, . . . xn−1)+Q2(x1, . . . xn−1) where Q1, Q2 : Fn−1 → F are multi-linear polynomials and Q1

is non-trivial. Observe that, for any fixing of (x1, . . . , xn−1) which does not zero Q1, the distribution
of the polynomial Q(x) (induced by the choice of xn) is uniform over F. It follows that for any
z ∈ F we have that

Pr[Q = z] ≥ 1

p
(1− Pr[Q1 = 0]).

By the induction hypothesis, Pr[Q1 = 0] ≤ 1 − p−1
p (p−1

p )n−2 = 1 − (p−1
p )n−1, and so Pr[Q = z] is

at least 1
p(p−1

p )n−1, as required.

We proceed with a proof of Lemma 4.7.

Proof. Let p = |F|. Observe that

SD(Q(Un), U) =
∑

z:Pr[U=z]≥Pr[Q(x)=z]

|Pr[U = z]− Pr[Q(x) = z]|

≤ p ·max
z∈F

(
1

p
− Pr[Q(Un) = z]

)
By Claim 4.8, the weight of z under Q(Un) is at least

1

p

(
p− 1

p

)n−1

≥ 1

p

(
1− n− 1

p

)
.

Hence, the statistical distance is upper-bounded by

p · 1

p

(
n− 1

p

)
=

(
n− 1

p

)
,

and the lemma follows.

Combining the results above with the known relation between statistical distance and charac-
teristic distance [BV10], we derive the following statement (which will be useful later).

Corollary 4.9. Let Q : Fd → F be multi linear polynomial then CD (Q(Un), U) ≤ min{ 2d
|F| , 1 −

e
− d
|F| }.
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4.3 Achieving Low Bias for Subquadratic Stretch over every field

Theorem 4.10. For any δ > 0, a > 4,b ≥ 8 output length m = O(k2−δ), and prime field F, with
high probability over the choice of a randomly sampled G← G(m, k, a+b)-hypergraph7, the function

fG,SPa,b : Fk → Fm ε-fools any linear test with ε = exp(Ω(kmin(δ/2,δ− 2
a−2.1

))).

Our proof makes use of the following definition.

Definition 4.11 ((α, β)-ruled). A (k,m, d)-hypergraph is (α, β)-ruled if any subset of the hyper-
edges K ⊂ [m] of size at least |K| ≥ α has a ruling subset R ⊂ K of size at least |R| ≥ β such
that:

1. No two hyperedge e1, e2 ∈ R intersect.

2. Any hyperedge e ∈ K \R share at most d− 1 vertices with all the vertices that touch R, i.e.,⋃
e′∈R e

′.

If the second item is substituted with the condition that for each e ∈ K\R and e1, e2 ∈ R if e∩e1 > 0
then e∩e2 = 0, we say that the graph is (α, β)-strongly ruled and that R is a strongly ruling subset.

The following lemma (whose proof appears in Section 4.3.2) shows that a random hypergraph
is likely to satisfy the above definition.

Lemma 4.12. For parameters d ≥ 8, δ > 0 and m = O(∆k) with ∆ = k1−δ, we let G
R←

G(m, k, d). Then, with probability 1 − o(1), the graph is (α, β)-ruled for any α, β which satisfy
β ≥ min

{
kδ/2, α

2∆d2

}
.

The proof of Theorem 4.10 is based on the following key lemma whose proof is deferred to
Section 4.3.1.

Lemma 4.13. Let fG,SPa,b : Fk → Fm be the sum-product Goldreich’s functions and F any prime
field. Assume that GΣ and GΠ are (m, k, a) and (m, k, b)-hypergraphs with the following properties:

1. G is (r, d − a/2)-expanding, i.e., any set of hyperedges, of size s < r, contains at least
s · (d− a/2) distinct vertices.

2. GΠ is (r, β)-ruled.

Then the following holds:

1. For any α ∈ Fm of Hamming weight at most r, the random variable 〈α, fG,SPa,b(x)〉 is uni-
formly distributed over F.

2. The generator fG,SPa,b 4b2c
β

2b
−1

b -fools every linear test where

cb ≤ min

{
3b2

|F|
, 1− e−

b2

|F|

}
≤ 1− e−b2/2 < 1.

7Throughout the paper, an event happens with high probability if it happens with probability which converges to
1 when k goes to infinity.
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Theorem 4.10 follows immediately from Lemmas 4.12 and 4.13.

Proof of Theorem 4.10 (assuming Lemmas 4.12 and 4.13). Let fG,SPa,b : Fk → Fm be the sum-
prod Goldreich Function, where GΣ and GΠ are (m, k, a) and (m, k, b) hypergraphs and a > 4, b ≥ 8.
We wish to show that fG,SPa,b meets the conditions of Lemma 4.13. By Claim 2.10, with high

probability, G is (r, d−a/2)-expanding for r = k1− 2
d−2.1 . Also, by Lemma 4.12, with high probability,

GΠ is (r, β)-ruled, for

β ≥ min
{
kδ/2,

r

2∆d

}
≥ min

{
kδ/2,

k1− 2
d−2

2k1−δd

}
= Ω(kmin(δ/2,δ− 2

a−2.1
))

Therefore, by Lemma 4.13 it fools every linear test with bias exponential in β.

4.3.1 Proof of Lemma 4.13

Let fG,SPa,b : Fk → Fm be a sum-product Goldreich’s functions, with the following properties:

1. G is (r, d− a/2)-expanding.

2. GΠ is (r, β)-ruled.

The first item of our proof was shown in [ABR12] meaning that for any α ∈ Fm such that α has an
Hamming weight of at most r we have that 〈α, fG,SPa,b(x)〉 is uniformly distributed over F. Hence,
we may assume that the set of indexes where αi 6= 0, denoted K, is of size at least |K| ≥ r.

Consider the multiplication hypergraph, GΠ. It is (r, β)-ruled and therefore it has a ruling
subset R ⊂ K of size at least β. Let Si denote the vertices of the i’th hyperedge and S =

⋃
i∈R Si

the set of vertices which touch some hyperedge in R. Since R is a ruling subset {Si}i∈R are disjoint
subsets of size |Si| = d. We can now write the linear test as:

〈α, fG,SPa,b(x)〉 =
∑
i∈K

αix
Si + L(x)

where xT stands for the monomial
∏
i∈T xi and L(x) is some linear function (obtained from the

additive part of the sum-product polynomial). The above can be partitioned into∑
i∈R

αix
Si +

∑
i∈K\R

αix
Si + L(x).

Let T (x) =
∑

i∈K\R αix
Si+L(x). The degree of T is at most b−1 in S’s variables (since hyperedges

outside R touch at most b− 1 vertices in S). Hence, by Lemma 2.18 we have that:

CD
(
〈α, fG,SPa,b(x)〉, U

)
≤ Ub(

∏
b

)
β

2b

where Ub(
∏
b) stands for the degree b Gowers uniformity of the degree b monomial

∏
b. Since the

b’th directional derivative of
∏
b is a multi-linear polynomial of degree b in (b+1)b variables. Ub(

∏
b)
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can be written as the degree-1 Gowers Uniformity of a multi-linear polynomial in b2 + b variables
and hence using Corollary 4.9 it can be upper bounded by

Ub(
∏
b

) ≤ min

{
1− e−

b2

|F| ,
3 · b2

|F|

}
≤ 1− e−b2/2

Finally, we note that based on Claim 2.15 the relation between the Statistical Distance to the
Characteristic Distance corresponds to

√
|F|. Therefore:

1. In case |F| ≥ 16b4:

SD
(
〈α, fG,SPa,b(x)〉, U

)
≤
√
|F|Ub(

∏
b

)
β

2b ≤ 3

4

(
3 · b2

|F|

) β

2b
−1

2. In case |F| ≥ 16b4:

SD
(
〈α, fG,SPa,b(x)〉, U

)
≤
√
|F|Ub(

∏
b

)
β

2b ≤ 4b2(1− e−b2/2)

And in both cases SD
(
〈α, fG,SPa,b(x)〉, U

)
≤ 4b2c

β

2b
−1

b Where:

cb ≤ min

{
1− e−

b2

|F| ,
3 · b2

|F|

}
≤ 1− e−b2/2

.

4.3.2 Proof of Lemma 4.12

Let G
R← G(m, k, d) where d ≥ 8, δ > 0 and m = O(∆k) with ∆ = k1−δ. We condition on the event

that:

1. Any pair of hyperedges in G intersect in at most 3 vertices;

2. Each hyperedge intersects with at most 2∆d2 other hyperedges;

3. The graph is (r, d− 5
2)-expanding for r = k

∆ = kδ

By Claims 2.13 and 2.10, this holds with high probability over the choice of G. For any subset K
of G’s hyperedges we identify a ruling subset R using Algorithm 3.

We proceed by proving that R is indeed a ruling-set and analyzing the halt point of Algorithm
3 in order to lower bound the size of |R|.

Claim 4.14. R is a ruling subset of K.

Proof. At the initialization R is a (trivial) ruling subset of K. We argue that this invariant is
preserved. Indeed, let e∗ be an hyperedge which is chosen at the beginning of an iteration. Since
e∗ is not a member of E1, it does not intersect with any other e ∈ R. To see that e∗ does not
violate the second property of a ruling subset, consider some e′ /∈ R and let i < d be the size of
the intersection between e′ and the set of nodes which participate in R. Either i ≥ d − 3, and so
e∗ and e′ do not intersect (since e∗ /∈ E2), or i < d − 3 and, by assumption, |e∗ ∩ e′| ≤ 3. In both
cases, the intersection between e′ and e∗ ∪ (

⋃
e∈R e) is at most d− 1 as required.
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input : Some (m, k, d)-hypergraph, G, and a subset of the hyperedges K ⊂ [m]
output: A ruling subset R ⊂ K

1 Initialize E1, E2, R = ∅;
2 while K \ (E1 ∪ E2) is non-empty do
3 Choose some e ∈ K \ (E1 ∪ E2) and add it to R;
4 Add to E1 any hyperedge that intercuts e ;
5 Add to E2 any hyperedge which intersects with an hyperedge that shares d− 3 or

more vertices with R’s hyperedges;

6 end
output: R

Algorithm 3: Finding Ruling Subset

Since we assumed that each hyperedge intersects with at most 2∆d2 other hyperedges, we
conclude that the size of E1 is at most |E1| < |R| 2∆d2. The next claim shows that unless R is
large, E2 cannot be too large.

Claim 4.15. If |R| < kδ/2 and d ≥ 8 then the size of E2 is at most 2∆d2 |R|.

Proof. Assume that |R| < kδ/2 and let W be the set of hyperedges that share more than d − 3
vertices with R (i.e., the set E2 is the set of hyperedges that intersect with some hyperedge in W ).
We upper-bound W using the expansion properties of the graph. Observe that the set T = W ∪R
of hyperedges touches only d |R| + 3 |W | vertices. Therefore, if W is larger than R, then T does
not expand by a factor of (d+ 3)/2 ≤ d− 5

2 . (The inequality follows since d ≥ 8). Since |R| < kδ/2

this violates the expansion properties of the hypergraph (property 3 above). Finally, based on our
second assumption, it follows that |E2| ≤ 2∆d2 |W | ≤ 2∆d2 |R|.

Overall, R is a ruling set of size at least |R| ≥ min
{
kδ/4, |K|

2∆d2

}
. The proof of Lemma 4.12

follows. That is, with probability 1 − o(1), the graph is (α, β)-ruled for any α, β which satisfy
β ≥ min

{
kδ/2, α

2∆d2

}
.

5 Goldreich’s functions has no low degree annihilating polynomial

5.1 Finding Annihilating Polynomial for Shrinking Set

We begin by noting that over a large field an annihilating polynomial forms a good distinguisher.

Remark 5.1. Let f : Fn → Fm be a function and let Q : Fm → F be an f -annihilating polynomial.
By Schwartz-Zippel Lemma, Prx[Q(f(x)) = 0]− Pry[Q(y) = 0] ≥ 1− deg(Q)

|F| .

Later, in the next subsection, we will later show that as long as G is a good expander fP,G
has no low degree, i.e., O(1), annihilating polynomial. In this subsection we further investigate
the feasibility of attacks which are based on annihilating polynomials. In particular, we describe
a simple general algorithm that in time poly(m`) finds, with high probability, an annihilating
polynomial of degree ` if such exists.
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input : A degree parameter `, number of iterations L
output: Q : Fm → F of degree ` such that Q ◦ f = 0 or abort

1 for i = 1 to L do
2 Sample xi ← Fk;
3 Compute yi = f(xi);
4 Compute the vector vi which is all the monomials of yi of degree at most `;

5 i.e., v is of length N =
∑

`′<`

(
m+`′

`′

)
;

6 end
7 Let V be the L×N matrix whose i-th row is vi;
8 if V ’s columns are independent then
9 abort

10 else
11 Solve V u = 0 and u 6= 0 using Gaussian Elimination;

output: Q : Fm → F the degree ` polynomial whose coefficients are u;

12 end

Algorithm 4: Finding Annihilating Polynomial for a degree-b function f : Fk → Fm.

Claim 5.2. If there exist an annihilating polynomial of degree at most ` then the algorithm outputs

such an annihilating polynomial, except with probability |F|m` ·
(
`b
|F|

)L
.

Proof. Suppose that Q is an annihilating polynomial of degree `. Then Q(yi) = 0 for every i ∈ [L],
and so the coefficient vector of Q forms a valid non-zero solution for the system V u = 0. We
proceed by upper bounding the probability that the algorithm outputs a polynomial Q′ 6= 0 which
is not an annihilating polynomial. Indeed, by union bound, the probability that there exists a
degree-` non-zero polynomial Q′ which is not f -annihilating but is zeroed over all yi is at most

∑
Q′

Pr
x=(xi)i∈[L]

[Q′(f(xi)) = 0 for all i] ≤
∑
Q′

L∏
i=1

Pr
xi

[Q′(f(xi)) = 0]

≤ |F|m` ·
(
`b

|F|

)L
,

where the sum ranges over all degree-` non-zero polynomials Q′ which are not f -annihilating, and
the last inequality follows from the Schwartz-Zippel Lemma by using the fact that Q′ ◦ f is just a
degree-`b polynomial in the x’s.

Assuming that `b ≤ |F|, we can take L to be m` + 1 and get an error of 1/|F|. For this
setting (and assuming that f is computable in polynomial time) the complexity of the algorithm
is dominated by the Gaussian elimination step whose cost is O(m3`) arithmetic operations.

Corollary 5.3. If a polynomial-time function f : Fk → Fm of degree b has annelaiting annihilat-
ing polynomial of degree ` where `b < |F|, then in time O(m3`) one can find such an annealing
polynomial with high probability.
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5.2 Lower-bounds on the degree of Annihilating Polynomials

Theorem 5.4. Let fG,SPa,b : Fk → Fm be a sum-product Goldreich’s functions and assume that GΠ

is (2r + 1, b/2 + 1)-expanding. Then there is no fG,SPa,b-annihilating polynomial of degree smaller
than r.

The proof is based on the following more general lemma (which is based on an argument of
Bogdanov [Bog05]).

Lemma 5.5. Let H is some m×k-matrix over F with dd(H) = 2·r+1. For i ∈ [m], let Li : Fk → F
be a polynomial of degree smaller than

∑m
j=1Hi,j. Consider the function f : Fk → Fm whose i-th

output is defined by f(x)i =
∏m
j=1 x

Hi,j
j + Li(x). Then there is no f -annihilating polynomial of

degree smaller than r.

Proof of Theorem 5.4 based on Lemma 5.5. Consider the function fG,SPa,b : Fk → Fm and assume
that GΠ is (2r + 1, b/2 + 1)-expanding. We let H represent the dependency matrix of GΠ and
obviously it is (2r + 1, b/2 + 1)-expanding. We can write the i-th output of fG,SPa,b as

m∏
j=1

x
HΠ,i,j

j + Li(x),

where Li is linear. We also have that dd(H) = 2r + 1 since it is (2r + 1, b/2 + 1)-expanding and
that:

deg(Li) = 1 < b =

m∑
j=1

Hi,j

and therefore by Lemma 5.5 it has no degree r annihilating polynomial.

Proof of Lemma 5.5. We follow the line of the proof presented in [Bog05]. Consider some degree-
r monomial A over the output variables y = (y1, . . . , ym), that is A = yα1

1 · · · yαmm such that∑m
i=1 αi ≤ r. Preform the substitution yj  f(x)j and consider the resulting polynomial A′ over

the x-variables. The polynomial A′ contains the monomial
∏n
i=1 x

∑m
j=1Hi,jαj

i . Moreover, since
deg(Li) <

∑m
j=1Hi,j , it is the highest degree monomial that A′ contains.

Now assume towards a contradiction that T : Fm → F is a degree-r annihilating polynomial.
Among all the monomials of T , take A = yα1

1 · · · yαmm to be the monomial for which the resulting A′

has the highest total degree. Since T ◦ f is the zero polynomial, T must contain some monomial,
B = yβ1

1 · · · y
βm
m with

∑m
i=1 βi ≤ r such that under the described substitution, B′ contains the

monomial
∏n
i=1 x

∑m
j=1Hi,jαj

i . However, since A′ has the highest total degree we obtain∑
i,j

βjdeg(Li) <
∑
i,j

βjHi,j ≤
∑
i,j

αjHi,j

meaning that it is possible only if for any i ∈ [n] we have that:

m∑
j=1

Hi,j(αj − βj) = 0

Define a vector v ∈ Fm by vj = αj − βj( mod |F|). By construction, v 6= 0, moreover, v can’t
have Hamming weight of more than 2 · r. However, v′ · H = 0 which contradicts the fact that
dd(H) = 2 · r + 1.
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6 Fooling Sparse Polynomials

In this section we show that the sum-product Goldreich’s functions also fools sparse polynomials.
Recall that a polynomial T : Fm → F is (q, t) sparse if it has a degree q and each of its inputs
appears in at most t monomials.

Theorem 6.1. For every a, b ≥ 4 and 0 < ρ < 0.5a−2.1
a−1.1 , m = k1+ρ and every constants q and t,

with high probability over G ← G(m, k, a + b), the function fG,SPa,b : Fk → Fm ε-fools any (q, t)

sparse polynomial T : Fm → F with ε = γΩ(k
1−2ρ a−1.1

a−2.1 ) where γ < 1 stands for the maximal bias of
a non-trivial polynomial over F in qd variables of degree at most qb and where each variable is of
degree at most q.

Remark 6.2. We note that for constant size fields γ is a constant (which depends on a, b, q and t).
We believe that the bias can be upper-bounded for large fields as well, though our proof falls short
of proving this.

Roughly speaking, we show that a sparse polynomial can be viewed as a linear combination of
distinct variables bounded degree polynomials. Formally, fix some (q, t) sparse polynomial T which
outputs the sum of mT monomials M1, . . . ,MmT . Consider the function T ′ : Fm → FmT which
maps y ∈ Fm to outputs (M1(y), . . . ,MmT (y)) and let f ′(x) = T ′(fG,SPa,b(x)). Now we can view
the test T as a linear test over f ′. Hence, it suffices to argue that f ′ fools the corresponding linear
tests. To prove this we combine the arguments from the previous two sections.

For a (m, k, d = a + b) hypergraph G, we consider the dependency hypergraph, GT , of the
function f ′(x) = T ′(fG, SPa,b(x)). Namely, GT contains k vertices and mT hyperedges each of
cardinality of at most qd. We similarly define GΠT as dependency hypergraph that corresponds to
the function T ′(fGΠ,Πb(x)). We begin with few simple observations regarding the structure of GT .

Claim 6.3. With high probability over G ← G(m, k, a + b), for any (q, t)-sparse polynomial T :
Fm → F the hypergraph GT satisfies the following properties:

1. mT ≤ tm.

2. Each hyperedge of GT contains at most qd vertices. Correspondingly, each hyperedge of GΠ,T

contains at most qb hyperedges.

3. Each vertex of GT participates in at most t2kρd hyperedges. Correspondingly, each vertex of
GΠ,T participates in at most t2kρb hyperedges.

4. Every hyperedge of GT intersects with at most tq2kρd2 hyperedges. Correspondingly, every
hyperedge of GΠ,T intersects with at most tq2kρb2 hyperedges.

Proof. The claim follows immediately from Claim 2.13 however we elaborate on each of these items
separately:

1. Since each of G’s hyperedges appear at most t times the overall number of hyperdeges in GT
must be upper bounded by mT

2. Trivial.
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3. Based on the second item of Claim 2.13 each of G’s vertices appear in at most 2kρd hyperedges
in G. Since each of G’s hyperedges appear in at most t of GT ’s hyperedges the claim follows.

4. Each hyperedge of GT consists of at most q hyperedges in G, each contains at d vertices.
Combined with the previous item the claim follows.

Moreover, we note that by Claim 2.10 we have that:

Claim 6.4. the following hold with high probability:

1. GΠ is (2q + 1, b/2 + 1)-expanding.

2. G is (r, d− a
2 )-expanding for r = k1− 2ρ

a−2.1 .

6.1 Proof of Theorem 6.1

In the following we condition on the event that GT and G satisfy the properties listed in Claims 6.3

and 6.4. Let mT be the number of monomials in T . We first note that if mT ≤ k1− 2ρ
a−2.1 /q then

T depends on at most r = k1− 2ρ
a−2.1 output variables of fG,SPa,b . In this case, the function fG,SPa,b

perfectly fools T . Indeed, by Claim 6.3 G is (r, d− a
2 )-expanding, and so, by Lemma 4.13, fG,SPa,b

is r-wise independent.

Let us therefore assume from now on that mT = Ω(k1− 2ρ
a−2.1 ). Let Mi(y) be the i-th monomial

of T and let M ′i(x) denote the polynomial obtained by substituting yj by the j-th output of
f = fG,SPa,b(x). The idea is to find a subset of input variables S ⊂ [k] such that after fixing

all variables outside S, the test T (f(x)) decomposes into ` ≥ Ω(k1−2ρa−1.1
a−2.1 ) non-zero polynomials

Ti(xSi) over pair-wise disjoint sets of x-variables S1, . . . , S`. Over a fixed-size field, the bias of such
a sum is exponentially small in `.

We construct the polynomials Ti and the set of variables S via the following greedy process.
Start with an empty S and a list L of all the monomials of T . At the i-th step, choose a monomial
M(y) ∈ L of maximal degree (hereafter referred to as the i-th leader), let e be the hyperedge that
corresponds to M in GT . We collect all hyperedges of distance at most 2 of e. That is, let Ji ⊂ [mT ]
be the set {

j ∈ [mT ] : ej ∩ e 6= ∅
∨(
∃e′ s.t. e′ ∩ ej 6= ∅

∧
e′ ∩ e 6= ∅

)}
,

where ej is the i-th hyperedge of GT . Let Ti(x) = M ′(x) +
∑

j∈JiM
′
j(x) and remove from the list

L the monomial M and all the monomials Mj , j ∈ Ji. Denote e by Si and update S = S ∪ Si. Let
` denote the total number of polynomials Ti. By construction, the sets Si’s are pairwise disjoint.
Also, in each step, we remove at most 2(tq2kρd2)2 (due to the properties of GT ), hence

` = Ω(mT /(tq2k
ρd2)2) = Ω(k1− 2ρ

a−2.1
−2ρ) = Ω(k1−2ρa−1.1

a−2.1 )

. We proceed with an argument similar to the one in Theorem 4.10. Observe that the polynomial

T (f(x)) =
∑̀
i=1

Ti(x).
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Recall that, by the triangle inequality, in order to upper-bound CD (T ◦ f, U) it suffices to upper-
bound

E
xi,i∈S

[
ωT (f(x))

]
,

for any fixing of the variables {xi : i 6∈ S}. Fix the variables xS̄ arbitrarily. Now, T (f(xS) decom-
poses to ` polynomials over pairwise-disjoint sets of variables xSi . We claim that these polynomials
are non-zero.

Claim 6.4.1. For every i ∈ [`], for every fixing α of the variables xS̄ the polynomial Ti(x) is not
the zero polynomial.

Proof. Fix some i and for now let us not fix the xS̄ variables. Let M(y) be the leader of Ti (the i-th
leader) and let q′ ≤ q denote its degree (in the y variables). Recall that the monomials Mj , j ∈ Ji
have degree at most q′. Therefore the polynomial Ti(x) = M ′(x) +

∑
j∈JiM

′
j(x) is of degree of

at most q′b. Moreover, there exists a monomial K(x) in M ′(x) of degree exactly q′b and all its
variables are S variables. (This is due to the “product part” of the sum-product polynomial.)
The proof now follows by noting that: (1) since GΠ is (2q + 1, b/2 + 1)-expanding a degree q′b
monomial in M ′(x) cannot be canceled due to the addition of

∑
j∈JiM

′
j(x) (as shown in the proof

of Theorem 6.1 any maximal degree monomial have at least a single variable that is not shared by
any other maximal degree monomial); and (2) After fixing the xS̄ variables, the monomial K(x)
remains unchanged. Therefore, even after fixing the variables xS̄ to α, the polynomial Ti(x) is not
the zero polynomial.

Let x∗ denote a random variable whose S entries are uniformly distributed over FS and its S̄
entries are fixed to α. Since the Ti are defined over disjoint variables, we can apply Lemma 2.18
we have that:

CD (T (f(x∗))) ≤
∏
i

U1 (Ti(x
∗)) ≤ γ`

where γ stands for the maximal bias of a non-trivial polynomial in qd variables of degree at most
qb and where each variable is of degree at most q and,

` = O(k1− 2ρ
a−2.1

−2ρ) = O(k1−2ρa−1.1
a−2.1 )

.

7 Concrete Parameters

In this section we estimate the security of our constructions for some concrete choices of parameters.
Estimates for combinatorial properties of random hypergraphs and matrices were computed as in
the preliminaries section (e.g., Claim 2.10) where binomial coefficiecnts were approximated using
standard approximation formulas for ln(n!).
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m d log |F| Required Bias Minimal k

250000 10 64 80 415

250000 10 2048 80 308

360000 10 1024 80 322

360000 7 512 80 584

360000 10 32 80 575

360000 10 64 80 436

360000 10 128 80 373

490000 7 256 80 651

490000 10 32 80 607

490000 10 2048 80 332

250000 10 256 120 476

360000 10 128 120 540

490000 10 128 120 562

Table 2: The bias of noisy linear mapping with noise rate µ = 0.4. For a given output size m,
sparsity parameter d, prime-order field F, and desired bias 2−b, we calculated the required input
size k such that, with probability 0.999 over a randomly chosen d-sparse matrix M ∈ Fm×k, the
function fM,µ cannot be distinguished by linear adversaries with advantage better than 2−b. It
is calculated based on the first item of Theorem 3.7, regarding the bias of Noisy Sparse Linear
Mapping, and supplemented by the estimation of the size of the expanding set in Claim 2.10

Required Security logk(m) d Computed Input

70 2 7 229

70 2 10 132

80 2 7 271

80 2 10 153

90 2 7 315

90 2 10 177

100 2 7 360

100 2 10 200

160 2 7 651

160 2 10 345

200 2 7 860

200 2 10 446

300 2 7 1431

300 2 10 712

Table 3: Estimated input for security against Attack 1. For noise parameter µ = 0.25, sparsity
parameter d, and desired attack complexity Ω

(
2Required Security

)
, we calculated the required input

size k such that, with probability 0.999 over a randomly chosen d-sparse matrix M ∈ Fm×k, the
running time of Attack 1, for the function fM,µ, is at least Ω

(
2Required Security

)
. It is calculated

based on Claim 3.1, regarding the complexity of Attack 1, and supplemented by the estimation of
the size of the expanding set in Claim 2.10
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k logk(m) d Computed Sec025 Computed Sec05

100 1.5 7 56 124

100 1.5 10 73 148

100 2 7 36 82

100 2 10 55 113

150 1.5 7 80 176

150 1.5 10 106 215

150 2 7 50 112

150 2 10 78 160

200 1.5 7 105 227

200 1.5 10 139 280

200 2 7 63 141

200 2 10 100 205

250 1.5 7 128 276

250 1.5 10 170 345

250 2 7 75 167

250 2 10 121 249

300 1.5 7 150 325

300 1.5 10 201 407

300 2 7 86 194

Table 4: Security estimation based on the linear-dependency attack described in Algorithm 1. For
an input length k, output length m (described via the stretch degree logk(m)), sparsity parameter
d, and field F, we calculate a lower bound on the expected log-complexity of the attack when
applied to a randomly chosen d-sparse matrix M ∈ Fm×k. We consider two cases for the noise rate:
0.25 an 0.5, and denote the corresponding bounds by “computed Sec0.5” and “computed Sec0.25”,
respectively. We base on the analysis of the attack in Section 3.1.
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logk(m) α d Min k for r = 80 Min k for r = 120

1 1 7 88 133

1 1 10 83 124

1 1 20 81 120

1 1 30 81 120

1.25 1 7 137 211

1.25 1 10 107 165

1.25 1 20 88 135

1.25 1 30 85 129

1.5 1 7 185 295

1.5 1 10 128 200

1.5 1 20 96 146

1.5 1 30 88 135

2 1 7 364 617

2 1 10 183 297

2 1 20 109 169

2 1 30 94 146

Table 5: Shrinking set estimation. For a given stretch degree logk(m), sparsity parameter d,
prime-order field F, and desired shrinking-set lower-bound r, we calculated the minimal input size
k such that, with probability 0.999 over a randomly chosen d-sparse matrix M ∈ Fm×k, M will
have no shrinking set of size smaller than r.

logk(m) α d Min k for r = 80 Min k for r = 120

1 3.5 7 2501 3784

1 5 10 2329 3523

1 10 20 2899 4384

1 15 30 3680 5561

1.25 3.5 7 6332 10054

1.25 5 10 4134 6444

1.25 10 20 3808 5837

1.25 15 30 4434 6762

1.5 3.5 7 19406 32625

1.5 5 10 7744 12460

1.5 10 20 5013 7791

1.5 15 30 5334 8210

2 3.5 7 529652 1057341

2 5 10 35590 61928

2 10 20 8938 14286

2 15 30 7757 12151

Table 6: Lossless expansion of random graphs. For a given stretch degree logk(m), degree param-
eter d, and desired expansion parameter (α, r) where α is set to d/2, we calculated the minimal
input size k such that, with probability 0.999, a randomly chosen (m, k, d)-hypergraph G will be
(α, r)-expanding.
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